SQL Library Reference for Snowflake: Functions
Reference for the SQL functions that come with the RAI Integration Services for Snowflake.
adamic_adar
adamic_adar(graph_name, arguments)
Compute the Adamic-Adar index of pairs of nodes in a graph.
Parameters
Parameter | Type | Description |
---|---|---|
graph_name | Varchar (opens in a new tab) | The name of the graph. |
arguments | Object (opens in a new tab) | A JSON object containing additional arguments. |
Supported Arguments
The following arguments may be specified in thearguments
object:
Argument Name | Type | Required | Description |
---|---|---|---|
tuples | Array (opens in a new tab) | Yes, but not together with node1 . | An array of arrays representing pairs of nodes. |
node1 | Int (opens in a new tab) / Array (opens in a new tab) | Yes, but not together with tuples . | A node, or an array of nodes. |
node2 | Int (opens in a new tab) / Array (opens in a new tab) | No. | A node, or an array of nodes. |
rai_engine | Varchar (opens in a new tab) | Yes, except if the engine is set via a RAI context. | The name of the RAI engine to use to execute the algorithm. |
result_table | Varchar (opens in a new tab) | No. | The fully qualified name of the Snowflake table in which to store results. |
Output
Type | Description | Schema |
---|---|---|
Table (opens in a new tab) | A table containing pairs of nodes and their Adamic-Adar index. | TABLE(node1 INT, node2 INT, score FLOAT) |
Explanation
The Adamic-Adar index measures the similarity of two nodes
based on the number of shared edges between them.
The adamic_adar
function returns a table with three columns
— node1
, node2
, and score
—
whose rows contain pairs of nodes and their Adamic-Adar index value.
If no graph with the provided name exists, an error is returned.
Higher scores indicate greater similarity,
and rows where the score
is zero are omitted from the results.
A score of zero indicates that two nodes are neither similar nor dissimilar.
Excluding zeros from the results improves performance and prevents the need
to remove those rows in a post-processing step.
A RAI engine is required to execute the adamic_adar
function.
You can either specify the engine in a
RAI context
or provide an engine name to the rai_engine
argument.
One of the node1
and tuples
arguments are required,
and they may not be used together.
There are several ways to use the adamic_adar
function:
- Compute the Adamic-Adar index of two nodes, or sets of nodes,
by passing node IDs, or arrays of node IDs, to the
node1
andnode2
arguments. You may compute the Adamic-Adar index for multiple pairs of nodes by passing an array of pairs of node IDs to thetuples
argument. - Compute the Adamic-Adar index of a node, or set of nodes,
and every other node in the graph, by passing a node ID, or array of node IDs,
to the
node1
argument.
Nodes that do not exist in the graph are ignored. The next section contains concrete examples.
Examples
Compute the Adamic-Adar index of two nodes in a graph
using the node1
and node2
arguments:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the Adamic-Adar index of nodes 1 and 2
-- using the `'node1'` and `'node2'` arguments.
SELECT * FROM TABLE(RAI.adamic_adar('my_graph', {'node1': 1, 'node2': 2}));
/*+------------------------------------+
| NODE1 | NODE2 | SCORE |
+-------+-------+--------------------+
| 1 | 2 | 1.4426950408889634 |
+-------+-------+--------------------+ */
-- Compute the Adamic-Adar index of nodes 1 and 2 and of nodes 1 and 3
-- using the `'tuples'` argument.
SELECT * FROM TABLE(RAI.adamic_adar('my_graph', {'tuples': [[1, 2], [1, 3]]}));
/*+------------------------------------+
| NODE1 | NODE2 | SCORE |
+-------+-------+--------------------+
| 1 | 2 | 1.4426950408889634 |
| 1 | 3 | 1.4426950408889634 |
+-------+-------+--------------------+ */
Compute the Adamic-Adar index of a given node and every node in a graph:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the Adamic-Adar index of node 1 and every node in `'my_graph'`.
SELECT * FROM TABLE(RAI.adamic_adar('my_graph', {'node1': 1}));
/*+------------------------------------+
| NODE1 | NODE2 | SCORE |
+-------+-------+--------------------+
| 1 | 1 | 2.8853900817779268 |
| 1 | 2 | 1.4426950408889634 |
| 1 | 3 | 1.4426950408889634 |
+-------+-------+--------------------+ */
Compute the Adamic-Adar index of a single node and a set of nodes
using the node1
and node2
arguments:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the Adamic-Adar index of node 1 and nodes 2 and 3.
SELECT * FROM TABLE(RAI.adamic_adar('my_graph', {'node1': 1, 'node2': [2, 3]}));
/*+------------------------------------+
| NODE1 | NODE2 | SCORE |
+-------+-------+--------------------+
| 1 | 2 | 1.4426950408889634 |
| 1 | 3 | 1.4426950408889634 |
+-------+-------+--------------------+ */
Compute the Adamic-Adar index of every pair of nodes from two sets of nodes:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the Adamic-Adar index between two sets of nodes.
-- The result contains rows for each pair in the Cartesian product of the sets of nodes.
-- Note that the row with 3 in the NODE1 column and 2 in the NODE2 column is missing
-- because the Adamic-Adar index is zero.
SELECT * FROM TABLE(RAI.adamic_adar('my_graph', {'node1': [1, 3], 'node2': [2, 3]}));
/*+-----------------------------+
| NODE1 | NODE2 | SCORE |
+-------+-------+-------------+
| 1 | 2 | 1.442695041 |
| 1 | 3 | 1.442695041 |
| 3 | 3 | 1.442695041 |
+-------+-------+-------------+ */
Compute the Adamic-Adar index of a given node and each node in a graph using a different RAI engine than the engine set in the RAI context, and store the results in a Snowflake table:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the Adamic-Adar index of node 1 and every other node in `'my_graph'`
-- using the RAI engine `'my_other_rai_engine'` and store the results
-- in the Snowflake table `my_result_table`. Note that the name of the
-- Snowflake table must be fully qualified.
SELECT TABLE(RAI.adamic_adar(
'my_graph',
{
'node1': 1,
'rai_engine': 'my_other_rai_engine',
'result_table': '<sf_database>.<sf_schema>.my_result_table'
}
));
-- Query the results.
SELECT * FROM my_result_table;
/*+----------------------------------+
| COL1 | COL2 | COL3 |
+------+------+--------------------+
| 1 | 1 | 2.8853900817779268 |
| 1 | 2 | 1.4426950408889634 |
| 1 | 3 | 1.4426950408889634 |
+------+------+--------------------+ */
See Also
jaccard_similarity
,
cosine_similarity
,
preferential_attachment
, and
common_neighbor
.
average_degree
average_degree(graph_name)
average_degree(graph_name, arguments)
Return the average degree of a graph.
Parameters
Parameter | Type | Description |
---|---|---|
graph_name | Varchar (opens in a new tab) | The name of the graph. |
arguments | Object (opens in a new tab) | A JSON object containing additional arguments. |
Supported Arguments
The following arguments may be specified in thearguments
object:
Argument Name | Type | Required | Description |
---|---|---|---|
rai_engine | Varchar (opens in a new tab) | No | The name of the RAI engine to use to execute the algorithm. Required if no engine has been set in a RAI context. |
result_table | Varchar (opens in a new tab) | No | The fully qualified name of the Snowflake table in which to store results. If this argument is provided, the function returns an empty table. |
Output
Type | Description |
---|---|
Float (opens in a new tab) | The average degree of the graph. |
Explanation
The function average_degree('my_graph')
returns the average degree
over all degrees of nodes in my_graph
.
If no graph with the provided name exists, an error is returned.
Note that in directed graphs, the degree of a node is the sum of its indegree and outdegree.
The average_degree
function requires a RAI engine.
You can either specify the engine in a
RAI context
or
provide an engine name to the rai_engine
argument.
The next section contains concrete examples.
Examples
Get the average degree of an undirected graph:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Get the average degree of `'my_graph'`.
SELECT RAI.average_degree('my_graph');
/*+-----+
| 1.5 |
+-----+ */
Get the average degree of a graph using a different RAI engine than the engine set in the RAI context, and store the result in a Snowflake table:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Get the average degree of `'my_graph'` using the RAI engine `'my_other_rai_engine'`
-- and store the results in the Snowflake table `'my_result_table'`.
-- Note that the name of the Snowflake table must be fully qualified.
SELECT RAI.max_degree(
'my_graph',
{
'rai_engine': 'my_other_rai_engine',
'result_table': '<sf_database>.<sf_schema>.my_result_table'
}
);
-- Query the results.
SELECT * FROM my_result_table;
/*+------+
| COL1 |
+------+
| 1.5 |
+------+ */
See Also
degree
,
max_degree
,
min_degree
, and
degree_histogram
.
betweenness_centrality
betweenness_centrality(graph_name)
betweenness_centrality(graph_name, arguments)
Measure a node’s importance in a graph based on how many shortest paths go through it.
Parameters
Parameter | Type | Description |
---|---|---|
graph_name | Varchar (opens in a new tab) | The name of the graph. |
arguments | Object (opens in a new tab) | A JSON object containing additional arguments. |
Supported Arguments
You can specify the following arguments in thearguments
object:
Argument Name | Type | Required | Description |
---|---|---|---|
node | Int (opens in a new tab) / Array (opens in a new tab) | No | A node ID, or array of node IDs. |
rai_engine | Varchar (opens in a new tab) | Yes, unless set in a RAI context. | The name of the RAI engine to use to execute the algorithm. |
result_table | Varchar (opens in a new tab) | No | The fully qualified name of the Snowflake table in which to store results. If this argument is provided, the function returns an empty table. |
Output
Type | Description | Schema |
---|---|---|
Table (opens in a new tab) | A table containing pairs of nodes and their betweenness centrality value. | TABLE(node INT, value FLOAT) |
Explanation
Betweenness centrality measures how important a node is based on how many times that node appears in a shortest path between any two nodes in the graph. Nodes with high betweenness centrality represent bridges between different parts of the graph. For example, in a network representing airports and the flights between them, nodes with high betweenness centrality may identify “hub” airports that connect flights to different regions.
Calculating betweenness centrality involves computing
all of the shortest paths between every pair of nodes in a graph
and can be expensive to calculate exactly.
The betweenness_centrality
function gives an approximation using the
Brandes algorithm (opens in a new tab)
with source nodes drawn from a sample of
100 nodes with the highest degrees.
Values are non-negative and are not normalized.
The betweenness_centrality
function returns a table with two columns
— node
and value
—
whose rows represent pairs of nodes in my_graph
and their approximate betweenness centrality value.
If no graph with the provided name exists, an error is returned.
You may get the betweenness centrality of a single node
by providing the node ID to the node
argument.
If the specified node does not exist in the graph,
an empty table is returned.
The betweenness_centrality
function requires a RAI engine.
You can either specify the engine in a
RAI context
or provide an engine name to the rai_engine
argument.
The next section contains concrete examples.
Examples
Compute the betweenness centrality of every node in a graph:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS (
SELECT * FROM VALUES (1, 2), (2, 3), (3, 3), (2, 4)
);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the betweenness centrality of each node in 'my_graph'.
SELECT * FROM TABLE(RAI.betweenness_centrality('my_graph'));
/*+--------------+
| NODE | VALUE |
+------+-------+
| 1 | 0.0 |
| 2 | 1.0 |
| 3 | 0.0 |
| 4 | 0.0 |
+------+-------+ */
-- Compute the betweenness centrality of each node in 'my_graph'
-- using the RAI engine 'my_other_rai_engine' and store the results
-- in the Snowflake table `my_result_table`. Note that the name of the
-- Snowflake table must be fully qualified.
SELECT TABLE(RAI.betweenness_centrality(
'my_graph',
{
'rai_engine': 'my_other_rai_engine',
'result_table': '<sf_database>.<sf_schema>.my_result_table'
}
));
-- Query the results.
SELECT * FROM my_result_table;
/*+-------------+
| COL1 | COL2 |
+------+------+
| 1 | 0.5 |
| 2 | 1 |
| 3 | 0.5 |
+------+------+ */
Compute the betweenness centrality of specific nodes:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS (
SELECT * FROM VALUES (1, 2), (2, 3), (3, 3), (2, 4)
);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the betweenness centrality of node 2.
SELECT * FROM TABLE(RAI.betweenness_centrality('my_graph', {'node': 2}));
/*+--------------+
| NODE | VALUE |
+------+-------+
| 2 | 1.0 |
+------+-------+ */
-- Compute the betweenness centrality of nodes 2 and 3.
SELECT * FROM TABLE(RAI.betweenness_centrality('my_graph', {'node': [2, 3]}));
/*+--------------+
| NODE | VALUE |
+------+-------+
| 2 | 1.0 |
| 3 | 0.0 |
+------+-------+ */
See Also
degree_centrality
,
eigenvector_centrality
, and
pagerank
.
common_neighbor
common_neighbor(graph_name, arguments)
Find common neighbors of nodes in a graph.
Parameters
Parameter | Type | Description |
---|---|---|
graph_name | Varchar (opens in a new tab) | The name of the graph. |
arguments | Object (opens in a new tab) | A JSON object containing additional arguments. |
Supported Arguments
The following arguments may be specified in thearguments
object:
Argument Name | Type | Required | Description |
---|---|---|---|
tuples | Array (opens in a new tab) | Yes, but not together with node1 . | An array of arrays representing pairs of nodes. |
node1 | Int (opens in a new tab) / Array (opens in a new tab) | Yes, but not together with tuples . | A node, or an array of nodes. |
node2 | Int (opens in a new tab) / Array (opens in a new tab) | No. | A node, or an array of nodes. |
node3 | Int (opens in a new tab) / Array (opens in a new tab) | No. | A node, or an array of nodes. |
rai_engine | Varchar (opens in a new tab) | Yes, except if the engine is set via a RAI context. | The name of the RAI engine to use to execute the algorithm. |
result_table | Varchar (opens in a new tab) | No. | The fully qualified name of the Snowflake table in which to store results. |
Output
Type | Description | Schema |
---|---|---|
Table (opens in a new tab) | A table whose rows represent triples of nodes in which the third node is a common neighbor of the first two nodes. | TABLE(node1 INT, node2 INT, node3 INT) |
Explanation
The common_neighbor
function returns a table with three columns
— node1
, node2
, and node3
—
whose rows indicate that node3
is a common neighbor of node1
and node2
.
If no graph with the provided name exists, an error is returned.
A RAI engine is required to execute the common_neighbor
function.
You can either specify the engine in a
RAI context
or provide an engine name to the rai_engine
argument.
One of the node1
and tuples
arguments are required,
and they may not be used together.
There are several ways to use the common_neighbor
function:
- Find the common neighbors of two nodes, or sets of nodes,
by passing node IDs, or arrays of node IDs, to the
node1
andnode2
arguments. You may find the common neighbors of multiple pairs of nodes by passing an array of pairs of node IDs to thetuples
argument. - Find the common neighbors of a node, or set of nodes,
and every other node in the graph, by passing a single node,
or an array of nodes, to the
node1
argument. - Check if a node is a common neighbor of two other nodes
by passing each node ID to the
node1
,node2
, andnode3
arguments. Ifnode3
is a common neighbor ofnode1
andnode2
, then the function returns a row in the result table containingnode1
,node2
, andnode3
. Otherwise, an empty table is returned. You may check multiple triples simultaneously by passing an array of triples of node IDs to thetuples
argument.
Nodes that do not exist in the graph are ignored. The next section contains concrete examples.
Examples
Find the common neighbors of two nodes:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 3), (1, 4), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Find the common neighbors of nodes 1 and 2 using the `'node1'` and `'node2'` arguments.
SELECT * FROM TABLE(RAI.common_neighbor('my_graph', {'node1': 1, 'node2': 2}));
/*+-----------------------+
| NODE1 | NODE2 | NODE3 |
+-------+-------+-------+
| 1 | 2 | 3 |
+------+--------+-------+ */
-- Find the common neighbors of nodes 1 and 2 and nodes 1 and 3 using the `'tuples'` argument.
-- No row is returned with 1 in the NODE1 column and 3 in the NODE2 column
-- since node 1 and node 3 have no common neighbors.
SELECT * FROM TABLE(RAI.common_neighbor('my_graph', {'tuples': [[1, 2], [1, 3]]}));
/*+-----------------------+
| NODE1 | NODE2 | NODE3 |
+-------+-------+-------+
| 1 | 2 | 3 |
+------+--------+-------+ */
Find the common neighbor of a given node and every node in a graph:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 3), (1, 4), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Find the common neighbors of node 1 and every node in `'my_graph'`.
SELECT * FROM TABLE(RAI.common_neighbor('my_graph', {'node1': 1}));
/*+-----------------------+
| NODE1 | NODE2 | NODE3 |
+-------+-------+-------+
| 1 | 1 | 3 |
| 1 | 1 | 4 |
| 1 | 2 | 3 |
+------+--------+-------+ */
Check whether or not a node is a common neighbor of two other nodes:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 3), (1, 4), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Check whether or not node 3 is a common neighbor of nodes 1 and 2.
-- The output is non-empty because 3 is a common neighbor.
SELECT * FROM TABLE(RAI.common_neighbor('my_graph', {'node1': 1, 'node2': 2, 'node3': 3}));
/*+-----------------------+
| NODE1 | NODE2 | NODE3 |
+-------+-------+-------+
| 1 | 2 | 3 |
+------+--------+-------+ */
-- Check whether or not node 4 is a common neighbor of nodes 1 and 2.
-- The output is empty because node 4 is not a common neighbor.
SELECT * FROM TABLE(RAI.common_neighbor('my_graph', {'node1': 1, 'node2': 2, 'node3': 4}));
/*+-----------------------+
| NODE1 | NODE2 | NODE3 |
+-------+-------+-------+
| Empty table. |
+------+--------+-------+ */
-- Check multiple triples simultaneously using the `'tuples'` argument.
SELECT * FROM TABLE(RAI.common_neighbor('my_graph', {'tuples': [[1, 2, 3], [1, 2, 4]]}))
/*+-----------------------+
| NODE1 | NODE2 | NODE3 |
+-------+-------+-------+
| 1 | 2 | 3 |
+------+--------+-------+ */
Find the common neighbor of a given node and every other node in a graph using a different RAI engine than the engine set in the RAI context, and store the results in a Snowflake table:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Find the common neighbors of node 1 and every other node in `'my_graph'`
-- using the RAI engine `'my_other_rai_engine'` and store the results
-- in the Snowflake table `'my_result_table'`. Note that the name of the
-- Snowflake table must be fully qualified.
SELECT TABLE(RAI.common_neighbor(
'my_graph',
{
'node1': 1,
'rai_engine': 'my_other_rai_engine',
'result_table': '<sf_database>.<sf_schema>.my_result_table'
}
));
-- Query the results.
SELECT * FROM my_result_table;
/*+-----------------------+
| NODE1 | NODE2 | NODE3 |
+-------+-------+-------+
| 1 | 1 | 3 |
| 1 | 1 | 4 |
| 1 | 2 | 3 |
+------+--------+-------+ */
See Also
jaccard_similarity
,
cosine_similarity
,
preferential_attachment
, and
cosine_similarity
.
cosine_similarity
cosine_similarity(graph_name, arguments)
Compute the cosine similarity of pairs of nodes in a graph.
Parameters
Parameter | Type | Description |
---|---|---|
graph_name | Varchar (opens in a new tab) | The name of the graph. |
arguments | Object (opens in a new tab) | A JSON object containing additional arguments. |
Supported Arguments
The following arguments may be specified in thearguments
object:
Argument Name | Type | Required | Description |
---|---|---|---|
tuples | Array (opens in a new tab) | Yes, but not together with node1 . | An array of arrays representing pairs of nodes. |
node1 | Int (opens in a new tab) / Array (opens in a new tab) | Yes, but not together with tuples . | A node, or an array of nodes. |
node2 | Int (opens in a new tab) / Array (opens in a new tab) | No. | A node, or an array of nodes. |
rai_engine | Varchar (opens in a new tab) | Yes, except if the engine is set via a RAI context. | The name of the RAI engine to use to execute the algorithm. |
result_table | Varchar (opens in a new tab) | No. | The fully qualified name of the Snowflake table in which to store results. |
Output
Type | Description | Schema |
---|---|---|
Table (opens in a new tab) | A table containing pairs of nodes and their cosine similarity value. | TABLE(node1 INT, node2 INT, score FLOAT) |
Explanation
Cosine similarity measures the similarity of two nodes
as the inner product of vector representations of the nodes’ neighborhoods.
The cosine_similarity
function returns a table with three columns
— node1
, node2
, and score
—
whose rows contain pairs of nodes and their cosine similarity value.
If no graph with the provided name exists, an error is returned.
Cosine similarity values range from -1 to 1, inclusive,
but rows where score
is zero are omitted from the results.
A score of zero indicates that two nodes are neither similar nor dissimilar.
Excluding zeros improves performance
and spares you from having to remove those rows in a post-processing step.
A RAI engine is required to execute the cosine_similarity
function.
You can either specify the engine in a
RAI context
or provide an engine name to the rai_engine
argument.
One of the node1
and tuples
arguments are required,
and they may not be used together.
There are several ways to use the cosine_similarity
function:
- Compute the cosine similarity of two nodes, or sets of nodes,
by passing node IDs, or arrays of node IDs, to the
node1
andnode2
arguments. You may compute the cosine similarity for multiple pairs of nodes by passing an array of pairs of node IDs to thetuples
argument. - Compute the cosine similarity of a node, or set of nodes,
and every other node in the graph, by passing a node ID, or array of node IDs,
to the
node1
argument.
Nodes that do not exist in the graph are ignored. The next section contains concrete examples.
Examples
Compute the cosine similarity of two nodes:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the cosine similarity of nodes 1 and 2
-- using the `'node1'` and `'node2'` arguments.
SELECT * FROM TABLE(RAI.cosine_similarity('my_graph', {'node1': 1, 'node2': 2}));
/*+-----------------------+
| NODE1 | NODE2 | SCORE |
+-------+-------+-------+
| 1 | 2 | 0.5 |
+-------+-------+-------+ */
-- Compute the cosine similarity of nodes 1 and 2 and nodes 1 and 3
-- using the `'tuples'` argument.
SELECT * FROM TABLE(RAI.cosine_similarity('my_graph', {'tuples': [[1, 2], [1, 3]]}));
/*+------------------------------------+
| NODE1 | NODE2 | SCORE |
+-------+-------+--------------------+
| 1 | 2 | 0.5 |
| 1 | 3 | 0.7071067811865475 |
+-------+-------+--------------------+ */
Compute the cosine similarity of a node and every node in a graph:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the cosine similarity of node 1 and every node in `'my_graph'`.
SELECT * FROM TABLE(RAI.cosine_similarity('my_graph', {'node1': 1}));
/*+------------------------------------+
| NODE1 | NODE2 | SCORE |
+-------+-------+--------------------+
| 1 | 1 | 1.0 |
| 1 | 2 | 0.5 |
| 1 | 3 | 0.7071067811865475 |
+-------+-------+--------------------+ */
Compute the cosine similarity of each node in a graph using a different RAI engine than the engine set in the RAI context, and store the results in a Snowflake table:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the cosine similarity of node 1 and every other node in `'my_graph'`
-- using the RAI engine `'my_other_rai_engine'` and store the results
-- in the Snowflake table `'my_result_table'`. Note that the name of the
-- Snowflake table must be fully qualified.
SELECT TABLE(RAI.cosine_similarity(
'my_graph',
{
'node1': 1,
'rai_engine': 'my_other_rai_engine',
'result_table': '<sf_database>.<sf_schema>.my_result_table'
}
));
-- Query the results.
SELECT * FROM my_result_table;
/*+----------------------------------+
| COL1 | COL2 | COL3 |
+------+------+--------------------+
| 1 | 1 | 1.0 |
| 1 | 2 | 0.5 |
| 1 | 3 | 0.7071067811865475 |
+------+------+--------------------+ */
See Also
jaccard_similarity
,
preferential_attachment
,
adamic_adar
, and
common_neighbor
.
create_rai_database
create_rai_database(rai_db)
Create a database in RAI.
Parameters
Parameter | Type | Description |
---|---|---|
rai_db | Varchar (opens in a new tab) | RAI database name. |
Output
Type | Description |
---|---|
Variant (opens in a new tab) | Status of the creation request. Example:“ok”. |
Explanation
The function create_rai_database
creates a database in RAI.
Examples
SELECT RAI.create_rai_database('rai_db');
See Also
get_rai_database
and
delete_rai_database
.
create_rai_engine
create_rai_engine(rai_engine, size)
Create an engine in RAI.
Parameters
Parameter | Type | Description |
---|---|---|
rai_engine | Varchar (opens in a new tab) | RAI engine name. |
size | Varchar (opens in a new tab) | RAI engine size. Possible values are 'XS' , 'S' , 'M' , 'L' , 'XL' . |
Output
Type | Description |
---|---|
Variant (opens in a new tab) | Status of the create engine request. Example:“ok”. |
Explanation
The function create_rai_engine
creates an engine in RAI.
Examples
SELECT RAI.create_rai_engine('rai_engine', 'S');
See Also
get_rai_engine
and
delete_rai_engine
.
current_rai_database
current_rai_database()
Return the RAI database that is currently selected.
Output
Type | Description |
---|---|
Varchar (opens in a new tab) | The name of the currently selected RAI database. |
Explanation
The function current_rai_database
returns the currently selected RAI database.
The database to use is typically set by calling the use_rai_database
procedure.
If no database has been previously selected, the function returns NULL
.
Examples
SELECT RAI.current_rai_database();
/*+----------------------------+
| RAI.CURRENT_RAI_DATABASE() |
+----------------------------+
| rai_db |
+----------------------------+ */
See Also
current_rai_engine
current_rai_engine()
Return the RAI engine that is currently selected.
Output
Type | Description |
---|---|
Varchar (opens in a new tab) | The name of the currently selected RAI engine. |
Explanation
The function current_rai_engine
returns the currently selected RAI engine.
The engine to use is typically set by calling the use_rai_engine
procedure.
If no engine has been previously selected, the function returns NULL
.
Examples
SELECT RAI.current_rai_engine();
/*+--------------------------+
| RAI.CURRENT_RAI_ENGINE() |
+--------------------------+
| rai_engine |
+--------------------------+ */
See Also
degree
degree(graph_name)
degree(graph_name, arguments)
Return the degree of each node in a graph.
Parameters
Parameter | Type | Description |
---|---|---|
graph_name | Varchar (opens in a new tab) | The name of the graph. |
arguments | Object (opens in a new tab) | A JSON object containing additional arguments. |
Supported Arguments
The following arguments may be specified in thearguments
object:
Argument Name | Type | Required | Description |
---|---|---|---|
node | Int (opens in a new tab) / Array (opens in a new tab) | No | Instruct degree to return only the rows in the output table whose node column contains the provided value(s). |
rai_engine | Varchar (opens in a new tab) | No | The name of the RAI engine to use to execute the algorithm. Required if no engine has been set in a RAI context. |
result_table | Varchar (opens in a new tab) | No | The fully qualified name of the Snowflake table in which to store results. If this argument is provided, the function returns an empty table. |
Output
Type | Description | Schema |
---|---|---|
Table (opens in a new tab) | A table representing pairs of neighbors in the graph. | TABLE(node1 INT, node2 INT) |
Explanation
The function degree('my_graph')
returns a table with two columns, node
and degree
,
whose rows represent the degrees of nodes in my_graph
.
If no graph with the provided name exists, an error is returned.
Note that in directed graphs, the degree of a node is the sum of its indegree and outdegree.
The degree
function requires a RAI engine.
You can either specify the engine in a
RAI context
or provide an engine name to the rai_engine
argument.
The next section contains concrete examples.
Examples
Get the degree of each node in an undirected graph with the RAI engine set in a RAI context:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Get the degrees of each node in `'my_graph'`.
SELECT * FROM TABLE(RAI.degree('my_graph'));
/*+---------------+
| NODE | DEGREE |
+------+--------+
| 1 | 2 |
| 2 | 1 |
+------+--------+ */
Get the degree of each node in a directed graph:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create a directed graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges', {'directed': true});
-- Get the degrees of each node in `'my_graph'`.
SELECT * FROM TABLE(RAI.degree('my_graph'));
/*+---------------+
| NODE | DEGREE |
+------+--------+
| 1 | 3 |
| 2 | 1 |
+------+--------+ */
Get the degree of a specific node in a graph:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Get the degree of node 2 in `'my_graph'`.
SELECT * FROM TABLE(RAI.degree('my_graph', {'node': 2}));
/*+---------------+
| NODE | DEGREE |
+------+--------+
| 2 | 2 |
+------+--------+ */
Get the degree of multiple nodes simultaneously:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Get the degree of nodes 1 and 2 in `'my_graph'`.
SELECT * FROM TABLE(RAI.degree('my_graph', {'node': [1, 2]}));
/*+---------------+
| NODE | DEGREE |
+------+--------+
| 1 | 1 |
| 2 | 2 |
+------+--------+ */
Get the degree of each node in a graph using a different RAI engine than the engine set in the RAI context, and store the results in a Snowflake table:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Get the number of edges in `'my_graph'` using the RAI engine `'my_other_rai_engine'`
-- and store the results in the Snowflake table `my_result_table`.
-- Note that the name of the Snowflake table must be fully qualified.
SELECT TABLE(RAI.degree(
'my_graph',
{
'rai_engine': 'my_other_rai_engine',
'result_table': '<sf_database>.<sf_schema>.my_result_table'
}
));
-- Query the results.
SELECT * FROM my_result_table;
/*+-------------+
| COL1 | COL2 |
+------+------+
| 1 | 2 |
| 2 | 1 |
+------+------+ */
See Also
min_degree
,
max_degree
,
average_degree
,
degree_histogram
, and
neighbor
.
degree_centrality
degree_centrality(graph_name)
degree_centrality(graph_name, arguments)
Compute the degree centrality of nodes in a graph.
Parameters
Parameter | Type | Description |
---|---|---|
graph_name | Varchar (opens in a new tab) | The name of the graph. |
arguments | Object (opens in a new tab) | A JSON object containing additional arguments. |
Supported Arguments
The following arguments may be specified in thearguments
object:
Argument Name | Type | Required | Description |
---|---|---|---|
node | Int (opens in a new tab) / Array (opens in a new tab) | No | Instruct degree_centrality to return only the rows in the output table whose node column contains the provided value. |
rai_engine | Varchar (opens in a new tab) | No | The name of the RAI engine to use to execute the algorithm. Required if no engine has been set in a RAI context. |
result_table | Varchar (opens in a new tab) | No | The fully qualified name of the Snowflake table in which to store results. If this argument is provided, the function returns an empty table. |
Output
Type | Description | Schema |
---|---|---|
Table (opens in a new tab) | A table containing pairs of nodes and their degree centrality value. | TABLE(node INT, value FLOAT) |
Explanation
Degree centrality is a measure of the centrality, or importance, of a node in a graph based on its degree. Degree centrality is computed as the degree of a node divided by the number of nodes in the graph minus one. For simple graphs without loops this value is at most one. Graphs with loops may have nodes with degree centrality greater than one.
The degree_centrality('my_graph')
function returns a table with two columns
— node
and value
—
whose rows represent pairs of nodes in my_graph
and their degree centrality value.
If no graph with the provided name exists, an error is returned.
You may get the degree centrality of a single node
by providing the node ID to the node
argument.
If the specified node does not exist in the graph,
an empty table is returned.
The degree_centrality
function requires a RAI engine.
You can either specify the engine in a
RAI context
or provide an engine name to the rai_engine
argument.
The next section contains concrete examples.
Examples
Compute the degree centrality of each node in a graph:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the degree centrality of each node in `'my_graph'`.
SELECT * FROM TABLE(RAI.degree_centrality('my_graph'));
/*+--------------+
| NODE | VALUE |
+------+-------+
| 1 | 0.5 |
| 2 | 1 |
| 3 | 0.5 |
+------+-------+ */
Compute the degree centrality of a single node:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the degree centrality of node 2.
SELECT * FROM TABLE(RAI.degree_centrality('my_graph', {'node': 2}));
/*+--------------+
| NODE | VALUE |
+------+-------+
| 2 | 1 |
+------+-------+ */
Compute the degree centrality of each node in a graph using a different RAI engine than the engine set in the RAI context, and store the results in a Snowflake table:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the degree centrality of each node in `'my_graph'`
-- using the RAI engine `'my_other_rai_engine'` and store the results
-- in the Snowflake table `my_result_table`. Note that the name of the
-- Snowflake table must be fully qualified.
SELECT TABLE(RAI.degree_centrality(
'my_graph',
{
'rai_engine': 'my_other_rai_engine',
'result_table': '<sf_database>.<sf_schema>.my_result_table'
}
));
-- Query the results.
SELECT * FROM my_result_table;
/*+-------------+
| COL1 | COL2 |
+------+------+
| 1 | 0.5 |
| 2 | 1 |
| 3 | 0.5 |
+------+------+ */
See Also
betweenness_centrality
,
eigenvector_centrality
, and
pagerank
.
degree_histogram
degree_histogram(graph_name)
degree_histogram(graph_name, arguments)
Count the number of nodes with each degree in a graph.
Parameters
Parameter | Type | Description |
---|---|---|
graph_name | Varchar (opens in a new tab) | The name of the graph. |
arguments | Object (opens in a new tab) | A JSON object containing additional arguments. |
Supported Arguments
The following arguments may be specified in thearguments
object:
Argument Name | Type | Required | Description |
---|---|---|---|
degree | Int (opens in a new tab) / Array (opens in a new tab) | No | Instruct degree_histogram to return only the rows in the output table whose degree column contains the provided value. |
count | Int (opens in a new tab) / Array (opens in a new tab) | No | Instruct degree_histogram to return only the rows in the output table whose count column contains the provided value. |
rai_engine | Varchar (opens in a new tab) | No | The name of the RAI engine to use to execute the algorithm. Required if no engine has been set in a RAI context. |
result_table | Varchar (opens in a new tab) | No | The fully qualified name of the Snowflake table to store results. If this argument is provided, the function returns an empty table. |
Output
Type | Description | Schema |
---|---|---|
Table (opens in a new tab) | A table representing the number of nodes with each degree. | TABLE(node1 INT, node2 INT) |
Explanation
The function degree_histogram('my_graph')
returns a table
with two columns, degree
and count
,
whose rows represent the number of nodes with each degree in the graph.
If no graph with the provided name exists, an error is returned.
Note that in directed graphs, the degree of a node is the sum of its indegree and outdegree.
The degree_histogram
function requires a RAI engine.
You can either specify the engine in a
RAI context
or
provide an engine name to the rai_engine
argument.
The next section contains concrete examples.
Examples
Count the number of nodes with each degree in a graph:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Count the number of nodes with each degree in `'my_graph'`.
SELECT * FROM TABLE(RAI.degree_histogram('my_graph'));
/*+----------------+
| DEGREE | COUNT |
+--------+-------+
| 1 | 2 |
| 2 | 1 |
+--------+-------+ */
Count the number of nodes in a graph with a specific degree:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Count the number of nodes with degree 2 in `'my_graph'`.
SELECT * FROM TABLE(RAI.degree_histogram('my_graph', {'degree': 2}));
/*+----------------+
| DEGREE | COUNT |
+--------+-------+
| 2 | 1 |
+--------+-------+ */
Find all degrees for which there is a specific number of nodes:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Count the number of nodes with degree 2 in `'my_graph'`.
SELECT * FROM TABLE(RAI.degree_histogram('my_graph', {'count': 2}));
/*+----------------+
| DEGREE | COUNT |
+--------+-------+
| 1 | 2 |
+--------+-------+ */
Count the number of nodes in a graph with each degree using a different RAI engine than the one set in the RAI context, and store the results in a Snowflake table:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Count the number of nodes with each degree in `'my_graph'`
-- using the RAI engine `'my_other_rai_engine'` and store the results
-- in the Snowflake table `my_result_table`.
-- Note that the name of the Snowflake table must be fully qualified.
SELECT TABLE(RAI.degree_histogram(
'my_graph',
{
'rai_engine': 'my_other_rai_engine',
'result_table': '<sf_database>.<sf_schema>.my_result_table'
}
));
-- Query the results.
SELECT * FROM my_result_table;
/*+-------------+
| COL1 | COL2 |
+------+------+
| 1 | 2 |
| 2 | 1 |
+------+------+ */
See Also
min_degree
,
max_degree
,
average_degree
, and
degree
.
delete_rai_database
delete_rai_database(rai_db)
Delete a database in RAI.
Parameters
Parameter | Type | Description |
---|---|---|
rai_db | Varchar (opens in a new tab) | RAI database name. |
Output
Type | Description |
---|---|
Variant (opens in a new tab) | Status of the deletion request. Example:“ok”. |
Explanation
The function delete_rai_database
deletes a database in RAI.
Examples
SELECT RAI.delete_rai_database('rai_db');
See Also
delete_rai_engine
delete_rai_engine(rai_engine)
Delete an engine in RAI.
Parameters
Parameter | Type | Description |
---|---|---|
rai_engine | Varchar (opens in a new tab) | RAI engine name. |
Output
Type | Description |
---|---|
Variant (opens in a new tab) | Status of the deletion request. Example:“ok”. |
Explanation
The function delete_rai_engine
deletes an engine in RAI.
Examples
SELECT RAI.delete_rai_engine('rai_engine');
See Also
diameter_range
diameter_range(graph_name)
diameter_range(graph_name, arguments)
Estimate the diameter of a graph with lower and upper bounds.
Parameters
Parameter | Type | Description |
---|---|---|
graph_name | Varchar (opens in a new tab) | The name of the graph. |
arguments | Object (opens in a new tab) | A JSON object containing additional arguments. |
Supported Arguments
The following arguments may be specified in thearguments
object:
Argument Name | Type | Required | Description |
---|---|---|---|
rai_engine | Varchar (opens in a new tab) | No | The name of the RAI engine to use to execute the algorithm. Required if no engine has been set in a RAI context. |
result_table | Varchar (opens in a new tab) | No | The fully qualified name of the Snowflake table in which to store results. If this argument is provided, the function returns an empty table. |
Output
Type | Description |
---|---|
Object (opens in a new tab) | A JSON object containing the lower and upper bounds for the diameter of the graph. |
{"min": 1, "max": 10}
Explanation
The diameter_range
function is used to determine
the range of possible diameter values for a graph.
If no graph with the provided name exists, an error is returned.
The graph’s diameter is estimated by selecting a number of random nodes in the graph and taking the maximum of all shortest path lengths from each selected node to the other nodes in the graph. This gives a range per node. Then, the intersection of the ranges is taken and the final range is returned.
The diameter_range
function requires a RAI engine.
You can either specify the engine in a
RAI context
or
provide an engine name to the rai_engine
argument.
The next section contains concrete examples.
Examples
Estimate the diameter of a graph:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 2), (2, 3), (3, 4);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Estimate the diameter of `'my_graph'`.
SELECT RAI.diameter_range('my_graph');
/*+-----------------------+
| { "max": 2, "min": 2} |
+-----------------------+ */
Estimate the diameter of a graph using a different RAI engine than the engine set in the RAI context, and store the results in a Snowflake table:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 2), (2, 3), (3, 4);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Estimate the diameter of `'my_graph'` using the RAI engine `'my_other_rai_engine'`
-- and store the results in the Snowflake table `my_result_table`.
-- Note that the name of the Snowflake table must be fully qualified.
SELECT RAI.diameter_range(
'my_graph',
{
'rai_engine': 'my_other_rai_engine',
'result_table': '<sf_database>.<sf_schema>.my_result_table'
}
);
-- Query the results.
SELECT * FROM my_result_table;
/*+-----------------------+
| COL1 |
+-----------------------+
| { "max": 2, "min": 2} |
+-----------------------+ */
See Also
eigenvector_centrality
eigenvector_centrality(graph_name)
eigenvector_centrality(graph_name, arguments)
Compute the eigenvector centrality of nodes in a graph.
Parameters
Parameter | Type | Description |
---|---|---|
graph_name | Varchar (opens in a new tab) | The name of the graph. |
arguments | Object (opens in a new tab) | A JSON object containing additional arguments. |
Supported Arguments
The following arguments may be specified in thearguments
object:
Argument Name | Type | Required | Description |
---|---|---|---|
node | Int (opens in a new tab) / Array (opens in a new tab) | No | Instruct eigenvector_centrality to return only the rows in the output table whose node column contains the provided value. |
rai_engine | Varchar (opens in a new tab) | No | The name of the RAI engine to use to execute the algorithm. Required if no engine has been set in a RAI context. |
result_table | Varchar (opens in a new tab) | No | The fully qualified name of the Snowflake table in which to store results. If this argument is provided, the function returns an empty table. |
Output
Type | Description | Schema |
---|---|---|
Table (opens in a new tab) | A table containing pairs of nodes and their eigenvector centrality value. | TABLE(node INT, value FLOAT) |
Explanation
Eigenvector centrality measures a node’s importance in such a way that connections to more important nodes contribute more to a node’s score than connections to less important nodes. It is computed based on the eigenvector associated with the top eigenvalue of the graph’s adjacency matrix.
We use the
power method (opens in a new tab)
to compute the eigenvector in our implementation.
Note that the power method requires the adjacency matrix to be diagonalizable,
and will only converge if the largest positive eigenvalue has multiplicity one.
If your graph does not meet either of these requirements,
the eigenvector_centrality
function will not converge.
The eigenvector_centrality('my_graph')
function returns a table with two columns
— node
and value
—
whose rows represent pairs of nodes in my_graph
and their eigenvector centrality value.
If no graph with the provided name exists, an error is returned.
You may get the eigenvector centrality of a single node
by providing the node ID to the node
argument.
If the specified node does not exist in the graph,
an empty table is returned.
The eigenvector_centrality
function requires a RAI engine.
You can either specify the engine in a
RAI context
or provide an engine name to the rai_engine
argument.
The next section contains concrete examples.
Examples
Compute the eigenvector centrality of each node in a graph:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the eigenvector centrality of each node in `'my_graph'`.
SELECT * FROM TABLE(RAI.eigenvector_centrality('my_graph'));
/*+---------------------+
| NODE | VALUE |
+------+--------------+
| 1 | 0.4082482905 |
| 2 | 0.8164965809 |
| 3 | 0.4082482905 |
+------+--------------+ */
Compute the eigenvector centrality of a single node:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the eigenvector centrality of node 2.
SELECT * FROM TABLE(RAI.eigenvector_centrality('my_graph', {'node': 2}));
/*+---------------------+
| NODE | VALUE |
+------+--------------+
| 2 | 0.8164965809 |
+------+--------------+ */
Compute the eigenvector centrality of each node in a graph using a different RAI engine than the engine set in the RAI context, and store the results in a Snowflake table:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the eigenvector centrality of each node in `'my_graph'`
-- using the RAI engine `'my_other_rai_engine'` and store the results
-- in the Snowflake table `my_result_table`. Note that the name of the
-- Snowflake table must be fully qualified.
SELECT TABLE(RAI.eigenvector_centrality(
'my_graph',
{
'rai_engine': 'my_other_rai_engine',
'result_table': '<sf_database>.<sf_schema>.my_result_table'
}
));
-- Query the results.
SELECT * FROM my_result_table;
/*+---------------------+
| COL1 | COL2 |
+------+--------------+
| 1 | 0.4082482905 |
| 2 | 0.8164965809 |
| 3 | 0.4082482905 |
+------+--------------+ */
See Also
betweenness_centrality
,
degree_centrality
, and
pagerank
.
exec
exec(rai_query)
exec(rai_db, rai_engine, rai_query, data, readonly)
Execute a query against the RAI database.
Parameters
Parameter | Type | Description |
---|---|---|
rai_db | Varchar (opens in a new tab) | RAI database name. |
rai_engine | Varchar (opens in a new tab) | RAI engine name. |
rai_query | Varchar (opens in a new tab) | The query that will be executed in RAI. |
data | Variant (opens in a new tab) | Data input for the rai_query . |
readonly | Boolean (opens in a new tab) | Whether or not the query is read-only. |
Output
Type | Description |
---|---|
Variant (opens in a new tab) | The query output information. |
/*+-----------------------------------------------+
| EXEC('DEF OUTPUT = {1; 2; 3}') |
+-----------------------------------------------+
| [ [ 1 ], [ 2 ], [ 3 ] ] |
+-----------------------------------------------+ */
Explanation
The function exec
executes in RAI the rai_query
passed as a parameter.
It uses the rai_db
database and the rai_engine
engine.
The data
parameter is used to provide input for the query.
The readonly
parameter specifies whether or not the rai_query
is read-only.
By default, readonly
is set to TRUE
.
Examples
SELECT RAI.exec('def output = {1; 2; 3}');
SELECT RAI.exec('rai_db', 'rai_engine', 'def output=foo', {'foo' : 'hello'}, TRUE);
See Also
exec_into
and create_rai_database
.
exec_into
exec_into(rai_query, sf_target)
exec_into(rai_db, rai_engine, sf_warehouse, sf_target, rai_query)
exec_into(rai_db, rai_engine, rai_query, data, readonly, sf_warehouse, sf_target)
Execute a query against the RAI database and insert the output into a target Snowflake table.
Parameters
Parameter | Type | Description |
---|---|---|
rai_db | Varchar (opens in a new tab) | RAI database name. |
rai_engine | Varchar (opens in a new tab) | RAI engine name. |
sf_warehouse | Varchar (opens in a new tab) | The selected Snowflake warehouse. |
sf_target | Varchar (opens in a new tab) | Target Snowflake table that will contain the query output. Note that the table specified by sf_target needs to be fully qualified, for example, database.schema.table . |
rai_query | Varchar (opens in a new tab) | The query that will be executed in RAI. |
data | Variant (opens in a new tab) | Data input for the rai_query . |
readonly | Boolean (opens in a new tab) | Whether or not the query is read-only. |
Output
Type | Description |
---|---|
Variant (opens in a new tab) | Status of the request. Example: “1 row(s) written”. |
Explanation
The function exec_into
executes the rai_query
passed as a parameter in RAI.
It uses the rai_db
database and the rai_engine
engine.
The output of the query is stored in the Snowflake table sf_target
.
The Snowflake warehouse is specified through sf_warehouse
.
Examples
CREATE OR REPLACE TABLE my_data(x INT);
SELECT RAI.exec_into('def output = {1; 2; 3}', 'my_db.rai.my_data');
CREATE OR REPLACE TABLE my_output(s VARCHAR);
SELECT RAI.exec_into(
'rai_db',
'rai_engine',
'def output=foo',
{'foo' : 'hello'},
TRUE,
'my_warehouse',
'my_db.rai.my_output'
);
See Also
exec
and create_rai_database
.
get_rai_database
get_rai_database(rai_db)
Get information about a RAI database.
Parameters
Parameter | Type | Description |
---|---|---|
rai_db | Varchar (opens in a new tab) | RAI database name. |
Output
Type | Description |
---|---|
Variant (opens in a new tab) | RAI database information as a JSON object. |
{
"account_name": "******",
"created_by": "******",
"created_on": "2023-05-31T16:05:05.131Z",
"id": "******",
"name": "rai_db",
"region": "us-east",
"state": "CREATED"
}
Explanation
The function get_rai_database
returns information about a RAI database.
Examples
SELECT RAI.get_rai_database('rai_db');
See Also
get_data_stream
get_data_stream(datasource)
Get the static information of a RAI data stream.
A RAI data stream is identified by the fully qualified object name (opens in a new tab)
of a SQL object, such as a table or view, in the form <database>.<schema>.<object>
.
Parameters
Parameter | Type | Description |
---|---|---|
datasource | Varchar (opens in a new tab) | The fully qualified name of the Snowflake data source that identifies the data stream. |
Output
Type | Description |
---|---|
Variant (opens in a new tab) | RAI data stream information as a JSON object. |
{
"account": "******",
"createdBy": "******",
"createdOn": "2023-05-31T11:24:09.710Z",
"dbLink": "sf_db.rai",
"id": "******",
"integration": "****",
"name": "sf_db.rai-sf_db.sf_schema.datasource",
"rai": {
"database": "rai_db",
"relation": "rai_baserelation"
},
"snowflake": {
"database": "sf_db",
"object": "sf_db.sf_schema.datasource",
"schema": "sf_schema"
},
"state": "CREATED"
}
Explanation
The function get_data_stream
returns the static information of a RAI data stream.
It includes the following fields:
JSON Field | Description |
---|---|
account | RAI account name. |
createdBy | Client who created the RAI data stream. |
createdOn | Creation time of the RAI data stream. |
dbLink | RAI database link that manages this RAI data stream. |
id | Internal identifier of the RAI data stream. |
integration | RAI integration that the RAI data stream is using. |
name | Identifying name of the RAI data stream. |
rai:database | RAI database that contains the target object of the RAI data stream. |
rai:relation | Name of the target object, which is a base relation. |
snowflake:database | Snowflake database that contains the source object of the RAI data stream. |
snowflake:object | Fully qualified name of the Snowflake object. |
snowflake:schema | Snowflake schema that holds the Snowflake object. |
state | Creation state of the RAI data stream. |
This information will not change over time, regardless of the RAI data stream’s state.
If the RAI data stream doesn’t exist, the function get_data_stream
returns NULL
.
To retrieve the current status of a RAI data stream and verify whether the data are synchronized, use get_data_stream_status
.
Examples
This is how to retrieve the static information of the RAI data stream that originates fromsf_db.sf_schema.sf_table
:
SELECT RAI.get_data_stream('sf_db.sf_schema.sf_table');
The query output will be a Snowflake JSON object as described above.
See Also
get_data_stream_status
and
create_data_stream
.
get_rai_engine
get_rai_engine(rai_engine)
Get information about a RAI engine.
Parameters
Parameter | Type | Description |
---|---|---|
rai_engine | Varchar (opens in a new tab) | RAI engine name. |
Output
Type | Description |
---|---|
Variant (opens in a new tab) | RAI engine information as a JSON object. |
{
"account_name": "******",
"created_by": "******",
"created_on": "2023-05-25T23:04:29.000Z",
"id": "******",
"name": "rai_engine",
"region": "us-east",
"size": "S",
"state": "PROVISIONED"
}
Explanation
The function get_rai_engine
returns information about a RAI engine.
Examples
SELECT RAI.get_rai_engine('rai_engine');
See Also
get_graph
get_graph(graph_name)
Get information about a graph, if it exists.
Parameters
Parameter | Type | Description |
---|---|---|
graph_name | Varchar (opens in a new tab) | The name of the graph. |
Output
Type | Description |
---|---|
Variant (opens in a new tab) | Graph information as a JSON object. |
{
"DIRECTED": false,
"EDGE_STREAM": "my_db.my_schema.my_edge_stream",
"NAME": "my_graph",
"RAI_DATABASE": "my_rai_database"
}
Explanation
The function get_graph
returns a JSON object with information about the graph,
including the name of the graph, whether or not the graph is directed,
the fully qualified name of the graph’s edge stream,
and the name of the RAI database in which the graph is stored.
Examples
SELECT RAI.get_graph('my_graph');
See Also
is_graph_created
and
list_graphs
.
is_connected
is_connected(graph_name)
is_connected(graph_name, arguments)
Check whether or not a graph is connected.
Parameters
Parameter | Type | Description |
---|---|---|
graph_name | Varchar (opens in a new tab) | The name of the graph. |
arguments | Object (opens in a new tab) | A JSON object containing additional arguments. |
Supported Arguments
The following arguments may be specified in thearguments
object:
Argument Name | Type | Required | Description |
---|---|---|---|
rai_engine | Varchar (opens in a new tab) | No | The name of the RAI engine to use to execute the algorithm. Required if no engine has been set in a RAI context. |
result_table | Varchar (opens in a new tab) | No | The fully qualified name of the Snowflake table in which to store results. If this argument is provided, the function returns an empty table. |
Output
Type | Description |
---|---|
Boolean (opens in a new tab) | Whether or not the graph is connected. |
Explanation
Returns true
if the graph is connected and false
otherwise.
If no graph with the provided name exists, an error is returned.
The is_connected
function requires a RAI engine.
You can either specify the engine in a
RAI context
or
provide an engine name to the rai_engine
argument.
The next section contains concrete examples.
Examples
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Determine whether or not `'my_graph'` is connected.
SELECT RAI.is_connected('my_graph');
/*+------+
| TRUE |
+------+ */
See Also
is_graph_created
is_graph_created(graph_name)
Check whether a graph called graph_name
exists in the RAI Integration.
Parameters
Parameter | Type | Description |
---|---|---|
graph_name | Varchar (opens in a new tab) | The name of the graph. |
Output
Type | Description |
---|---|
Boolean (opens in a new tab) | Whether or not the graph exists. |
Explanation
Returns true
if a graph called graph_name
exists and false
if it does not.
Examples
SELECT RAI.is_graph_created('my_graph');
See Also
create_graph
,
get_graph
, and
list_graphs
.
jaccard_similarity
jaccard_similarity(graph_name, arguments)
Compute the Jaccard similarity of pairs of nodes in a graph.
Parameters
Parameter | Type | Description |
---|---|---|
graph_name | Varchar (opens in a new tab) | The name of the graph. |
arguments | Object (opens in a new tab) | A JSON object containing additional arguments. |
Supported Arguments
The following arguments may be specified in thearguments
object:
Argument Name | Type | Required | Description |
---|---|---|---|
tuples | Array (opens in a new tab) | Yes, but not together with node1 . | An array of arrays representing pairs of nodes. |
node1 | Int (opens in a new tab) / Array (opens in a new tab) | Yes, but not together with tuples . | A node, or an array of nodes. |
node2 | Int (opens in a new tab) / Array (opens in a new tab) | No. | A node, or an array of nodes. |
rai_engine | Varchar (opens in a new tab) | Yes, except if the engine is set via a RAI context. | The name of the RAI engine to use to execute the algorithm. |
result_table | Varchar (opens in a new tab) | No. | The fully qualified name of the Snowflake table in which to store results. |
Output
Type | Description | Schema |
---|---|---|
Table (opens in a new tab) | A table containing pairs of nodes and their Jaccard similarity value. | TABLE(node1 INT, node2 INT, score FLOAT) |
Explanation
Jaccard similarity measures the similarity of two nodes
based on the number of neighbors common to both nodes.
The jaccard_similarity
function returns a table with three columns
— node1
, node2
, and score
—
whose rows contain pairs of nodes and their Jaccard similarity value.
If no graph with the provided name exists, an error is returned.
Jaccard similarity values range from 0 to 1, inclusive,
but rows where score
is zero are omitted from the results.
A score of zero indicates that two nodes are incomparable.
Excluding zeros improves performance and
spares you from having to remove those rows in a post-processing step.
A RAI engine is required to execute the jaccard_similarity
function.
You can either specify the engine in a
RAI context
or provide an engine name to the rai_engine
argument.
One of the node1
and tuples
arguments are required,
and they may not be used together.
There are several ways to use the jaccard_similarity
function:
- Compute the Jaccard similarity of two nodes, or sets of nodes,
by passing node IDs, or arrays of node IDs, to the
node1
andnode2
arguments. You may compute the Jaccard similarity for multiple pairs of nodes by passing an array of pairs of node IDs to thetuples
argument. - Compute the Jaccard similarity of a node, or set of nodes,
and every other node in the graph, by passing a node ID, or array of node IDs,
to the
node1
argument.
Nodes that do not exist in the graph are ignored. The next section contains concrete examples.
Examples
Compute the Jaccard similarity of two nodes in a graph:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the Jaccard similarity of nodes 1 and 2
-- using the `'node1'` and `'node2'` arguments.
SELECT * FROM TABLE(RAI.jaccard_similarity('my_graph', {'node1': 1, 'node2': 2}));
/*+------------------------------------+
| NODE1 | NODE2 | SCORE |
+-------+-------+--------------------+
| 1 | 2 | 0.3333333333333333 |
+-------+-------+--------------------+ */
-- Compute the Jaccard similarity of nodes 1 and 2 and nodes 1 and 3
-- using the `'tuples'` argument.
SELECT * FROM TABLE(RAI.jaccard_similarity('my_graph', {'tuples': [[1, 2], [1, 3]]}));
/*+------------------------------------+
| NODE1 | NODE2 | SCORE |
+-------+-------+--------------------+
| 1 | 2 | 0.3333333333333333 |
| 1 | 3 | 0.5 |
+-------+-------+--------------------+ */
Compute the Jaccard similarity between a given node and every other node in a graph:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the Jaccard similarity of node 1 and every other node in `'my_graph'`.
SELECT * FROM TABLE(RAI.jaccard_similarity('my_graph', {'node1': 1}));
/*+------------------------------------+
| NODE1 | NODE2 | SCORE |
+-------+-------+--------------------+
| 1 | 1 | 1.0 |
| 1 | 2 | 0.3333333333333333 |
| 1 | 3 | 0.5 |
+-------+-------+--------------------+ */
Compute the Jaccard similarity of each node in a graph using a different RAI engine than the engine set in the RAI context, and store the results in a Snowflake table:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the Jaccard similarity of node 1 and every other node in `'my_graph'`
-- using the RAI engine `'my_other_rai_engine'` and store the results
-- in the Snowflake table `'my_result_table'`. Note that the name of the
-- Snowflake table must be fully qualified.
SELECT TABLE(RAI.jaccard_similarity(
'my_graph',
{
'node1': 1,
'rai_engine': 'my_other_rai_engine',
'result_table': '<sf_database>.<sf_schema>.my_result_table'
}
));
-- Query the results.
SELECT * FROM my_result_table;
/*+----------------------------------+
| COL1 | COL2 | COL3 |
+------+------+--------------------+
| 1 | 1 | 1.0 |
| 1 | 2 | 0.3333333333333333 |
| 1 | 3 | 0.5 |
+------+------+--------------------+ */
See Also
cosine_similarity
,
preferential_attachment
,
adamic_adar
, and
common_neighbor
.
label_propagation
label_propagation(graph_name)
label_propagation(graph_name, arguments)
Find communities using the label propagation algorithm (opens in a new tab).
Parameters
Parameter | Type | Description |
---|---|---|
graph_name | Varchar (opens in a new tab) | The name of the graph. |
arguments | Object (opens in a new tab) | A JSON object containing additional arguments. |
Supported Arguments
You can specify the following arguments in thearguments
object:
Argument Name | Type | Required | Description |
---|---|---|---|
node | Int (opens in a new tab) / Array (opens in a new tab) | No. | A node ID, or array of node IDs. |
community | Int (opens in a new tab) / Array (opens in a new tab) | No. | A community ID, or array of community IDs. |
rai_engine | Varchar (opens in a new tab) | Yes, unless the engine is set via a RAI context. | The name of the RAI engine to use to execute the algorithm. |
result_table | Varchar (opens in a new tab) | No. | The fully qualified name of the Snowflake table in which to store results. |
Output
Type | Description | Schema |
---|---|---|
Table (opens in a new tab) | A table containing node IDs and their community IDs. | TABLE(node INT, community INT) |
Explanation
The label propagation algorithm identifies communities in a graph through iterative steps. Nodes are initialized with unique lables and, at each iteration of the algorithm, nodes adopt the most frequently occuring label among their neighbors. In directed graphs, only outneighbors are considered. Ties in label frequency are broken deterministically. The process concludes when labels of the nodes no longer change or a preset maximum number of iterations is reached.
The label_propagation
function returns a table with two columns
— node
and community
—
whose rows pair a node ID with its community ID.
Community IDs are the maximum node ID contained in the community.
If no graph with the provided name exists, an error is returned.
A RAI engine is required to execute the label_propagation
function.
You can either specify the engine in a
RAI context
or provide an engine name to the rai_engine
argument.
Examples
Compute community labels for each node in a graph:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with six nodes and seven edges.
CREATE TABLE my_edges(x INT, y INT) AS (
SELECT * FROM VALUES
(1, 2), (2, 3), (3, 1), (3, 4),
(4, 5), (5, 6), (6, 4)
);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute community labels using the label propagation algorithm.
SELECT * FROM TABLE(RAI.label_propagation('my_graph'));
/*+------------------+
| NODE | COMMUNITY |
+------+-----------+
| 1 | 3 |
| 2 | 3 |
| 3 | 3 |
| 4 | 6 |
| 5 | 6 |
| 6 | 6 |
+------+-----------+ */
-- Compute community labels using the RAI engine 'my_other_rai_engine'
-- and store the results in the Snowflake table `my_result_table`.
-- Note that the name of the Snowflake table must be fully qualified.
SELECT TABLE(RAI.label_propagation(
'my_graph',
{
'rai_engine': 'my_other_rai_engine',
'result_table': '<sf_database>.<sf_schema>.my_result_table'
}
));
-- Query the results.
SELECT * FROM my_result_table;
/*+------------------+
| NODE | COMMUNITY |
+------+-----------+
| 1 | 3 |
| 2 | 3 |
| 3 | 3 |
| 4 | 6 |
| 5 | 6 |
| 6 | 6 |
+------+-----------+ */
Find the community label of specific nodes:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with six nodes and seven edges.
CREATE TABLE my_edges(x INT, y INT) AS (
SELECT * FROM VALUES
(1, 2), (2, 3), (3, 1), (3, 4),
(4, 5), (5, 6), (6, 4)
);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the community label of node 2.
SELECT * FROM TABLE(RAI.label_propagation('my_graph', {'node': 2}));
/*+------------------+
| NODE | COMMUNITY |
+------+-----------+
| 2 | 3 |
+------+-----------+ */
-- Compute the community label of nodes 2 and 4.
SELECT * FROM TABLE(RAI.label_propagation('my_graph', {'node': [2, 4]}));
/*+------------------+
| NODE | COMMUNITY |
+------+-----------+
| 2 | 3 |
| 4 | 6 |
+------+-----------+ */
Find all nodes with a given community ID:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with six nodes and seven edges.
CREATE TABLE my_edges(x INT, y INT) AS (
SELECT * FROM VALUES
(1, 2), (2, 3), (3, 1), (3, 4),
(4, 5), (5, 6), (6, 4)
);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute all nodes with community label 3.
SELECT * FROM TABLE(RAI.label_propagation('my_graph', {'community': 3}));
/*+------------------+
| NODE | COMMUNITY |
+------+-----------+
| 1 | 3 |
| 2 | 3 |
| 3 | 3 |
+------+-----------+ */
See Also
list_data_streams
list_data_streams()
List all created RAI data streams of the RAI database link.
A RAI data stream is identified by the fully qualified name (opens in a new tab)
of a SQL object, such as a table or view, in the form <database>.<schema>.<object>
.
Output
Type | Description |
---|---|
Variant (opens in a new tab) | List of all RAI data streams as a JSON object. |
[
{
"account": "******",
"createdBy": "******",
"createdOn": "2023-05-31T11:24:09.710Z",
"dbLink": "sf_db.my_schema",
"id": "******",
"integration": "******",
"name": "datasource",
"rai": {
"database": "rai_db",
"relation": "rai_baserelation"
},
"snowflake": {
"database": "sf_db",
"object": "sf_db.my_schema.datasource",
"schema": "my_schema"
},
"state": "CREATED"
}
]
Explanation
The function list_data_streams
belongs to a specific RAI database link located in a Snowflake schema, for example, snowflake_database.RAI
, and returns a list of all active RAI data streams within this RAI database link.
The list of RAI data streams is returned in JSON format.
Examples
SELECT RAI.list_data_streams();
See Also
get_data_stream
and
create_data_stream
.
list_entities
list_entities()
Return a list of all available entities.
Output Table
Type | Description | Schema |
---|---|---|
Table (opens in a new tab) | A table of entities represented by their name and key. | TABLE(entity_name VARCHAR, entity_key ARRAY) |
Examples
SELECT * FROM TABLE(SF_INT.LIST_ENTITIES());
/* +-------------+-----------------+
| ENTITY_NAME | ENTITY_KEY |
|-------------+-----------------|
| Client | [ |
| | "first_name", |
| | "last_name" |
| | ] |
| Product | [ |
| | "name" |
| | ] |
+-------------+-----------------+ */
See Also
list_graphs
list_graphs()
List all available graphs in the RAI Integration.
Output
Type | Description |
---|---|
Array (opens in a new tab) | List of all available graphs as a JSON object. |
[
{
"DIRECTED": false,
"EDGE_STREAM": "my_db.my_schema.my_edge_stream",
"NAME": "my_graph",
"RAI_DATABASE": "my_rai_db"
}
]
Explanation
The function list_graphs
returns a list in JSON format including all available graphs.
Examples
SELECT RAI.list_graphs();
See Also
is_graph_created
and
get_graph
.
list_graph_algorithms
list_graph_algorithms()
List all available graph algorithms within the SQL Library for Snowflake.
Output
Type | Description |
---|---|
Object (opens in a new tab) | List of all available graph algorithms as a JSON object. |
{
"_documentation": "https://docs.relational.ai/preview/snowflake/graph-analytics",
"basics": {
"average_degree": {
"description": "Returns the average degree of the graph."
},
"degree": {
"description": "Finds the degrees of each node in the graph."
},
"degree_histogram": {
"description": "Counts the number of nodes with each degree in the graph."
},
"max_degree": {
"description": "Returns the maximum degree of the graph."
},
"min_degree": {
"description": "Returns the minimum degree of the graph. In directed graphs, the degree of a node is the sum of its indegree and outdegree."
},
"neighbor": {
"description": "Finds the neighbors of each node in the graph."
},
"num_edges": {
"description": "Returns the number of edges in the graph."
},
...
}
}
Explanation
The function list_graph_algorithms
returns a list in JSON format including all available graph algorithms within the SQL Library for Snowflake.
Examples
SELECT RAI.list_graph_algorithms();
See Also
list_lookups
list_entities()
Return a list of all tables and entities currently covered by the lookup table.
Output
Type | Description | Schema |
---|---|---|
Table (opens in a new tab) | A table of entities represented by their name and key attributes. | TABLE(entity_name VARCHAR, database_name VARCHAR, schema_name VARCHAR, table_name VARCHAR, entity_key_attrs ARRAY) |
Examples
SELECT * FROM TABLE(RAI.list_lookups());
/* +-------------+----------------+-------------+------------+------------------------+
| ENTITY_NAME | DATABASE_NAME | SCHEMA_NAME | TABLE_NAME | ENTITY_KEY_ATTRS |
|-------------+----------------+-------------+------------+------------------------|
| Client | COMMERCE_DB | ONLINE_SHOP | PURCHASE | [ |
| | | | | "CLIENT_FIRST_NAME", |
| | | | | "CLIENT_LAST_NAME" |
| | | | | ] |
| Product | COMMERCE_DB | ONLINE_SHOP | PURCHASE | [ |
| | | | | "PRODUCT_NAME" |
| | | | | ] |
+-------------+----------------+-------------+------------+------------------------+ */
See Also
load_model
load_model(rai_db, rai_engine, model_name, model_path)
Create a model (aka Rel code) in the RAI database.
Parameters
Parameter | Type | Description |
---|---|---|
rai_db | Varchar (opens in a new tab) | RAI database name. |
rai_engine | Varchar (opens in a new tab) | RAI engine name. |
model_name | Varchar (opens in a new tab) | RAI model name. |
model_path | Varchar (opens in a new tab) | The path to a file with Rel code. The path is typically a URI. For example: azure://account_name.blob.core.windows.net/container/model.rel. The model (i.e., Rel code) will be downloaded and imported into RAI. |
Output
Type | Description |
---|---|
Variant (opens in a new tab) | Status of the loading model request. Example:“ok”. |
Explanation
The function load_model
imports the model from the specified Azure URI provided through the model_path
parameter and stores it in the RAI database.
The function load_model
will download the Rel code (that is also called a model) from the specified path and import it into RAI.
Examples
SELECT RAI.load_model(
'rai_db',
'rai_engine',
'my_model',
'azure://<account_name>.blob.core.windows.net/container/model.rel'
);
See Also
load_model_code
and load_model_query
.
load_model_code
load_model(rai_db, rai_engine, model_name, model_code)
Create a model given as Rel code in the RAI database.
Parameters
Parameter | Type | Description |
---|---|---|
rai_db | Varchar (opens in a new tab) | RAI database name. |
rai_engine | Varchar (opens in a new tab) | RAI engine name. |
model_name | Varchar (opens in a new tab) | RAI model name. |
model_code | Varchar (opens in a new tab) | The Rel code (also known as model) that will be imported into RAI. |
Output
Type | Description |
---|---|
Variant (opens in a new tab) | Status of the load-model request. Example:“ok”. |
Explanation
The function load_model_code
creates a model inside RAI with the given name and code.
Examples
SELECT RAI.load_model_code('rai_db', 'rai_engine', 'my_model', 'def myrange(x) = range(1, 10, 1, x)');
See Also
load_model
and load_model_query
.
load_model_query
load_model_query(model_name, model_path)
Create a model in the RAI database.
A model is a collection of Rel declarations that is persisted in the database. Relations defined in a model are available to any query executed against the database.
Parameters
Parameter | Type | Description |
---|---|---|
model_name | Varchar (opens in a new tab) | RAI model name. |
model_path | Varchar (opens in a new tab) | The path to a file with Rel code. The path is typically a URI. For example: azure://account_name.blob.core.windows.net/container/model.rel. The model (i.e., Rel code) will be downloaded and imported into RAI. |
Output
Type | Description |
---|---|
Variant (opens in a new tab) | Status of the load-model request. Example:“ok”. |
Explanation
The function load_model_query
imports the model from the specified Azure URI provided through the model_path
parameter and stores it in RAI.
The function load_model_query
will download the Rel code (that is also called a model) from the specified path and import it into RAI.
Examples
SELECT RAI.load_model_query(
'my_model',
'azure://<account_name>.blob.core.windows.net/container/model.rel'
);
See Also
load_model
and load_model_code
.
local_clustering_coefficient
local_clustering_coefficient(graph_name)
local_clustering_coefficient(graph_name, arguments)
Compute the local clustering coefficient of nodes in a graph.
Parameters
Parameter | Type | Description |
---|---|---|
graph_name | Varchar (opens in a new tab) | The name of the graph. |
arguments | Object (opens in a new tab) | A JSON object containing additional arguments. |
Supported Arguments
The following arguments may be specified in thearguments
object:
Argument Name | Type | Required | Description |
---|---|---|---|
node | Int (opens in a new tab) / Array (opens in a new tab) | No | The node or array of nodes for which the local clustering coefficient is computed. |
rai_engine | Varchar (opens in a new tab) | No | The name of the RAI engine to use to execute the algorithm. Required if no engine has been set in a RAI context. |
result_table | Varchar (opens in a new tab) | No | The fully qualified name of the Snowflake table in which to store results. If this argument is provided, the function returns an empty table. |
Output
Type | Description | Schema |
---|---|---|
Table (opens in a new tab) | A table containing nodes and their local clustering coefficient value. | TABLE(node INT, value FLOAT) |
Explanation
The local clustering coefficient of a node is
a measure of how interconnected the neighbors of a node are.
In particular, the local clustering coefficient quantifies
how close the node’s neighbors are to being a clique
as the probability that an edge exists between any two of the node’s neighbors.
Formally, the local clustering coefficient C
for a node v
is calculated as the following:
C(v) = (2 * num_edges) / (degree(v) * (degree(v) - 1))
Here, num_edges
is the number of edges between the neighbors of node v
and degree(v)
is the degree of node v
.
The local_clustering_coefficient
function returns a table with two columns
— node
and value
—
whose rows represent pairs of nodes and their local clustering coefficient.
Nodes whose local clustering coefficient is zero are excluded from the results.
If no graph with the provided name exists, an error is returned.
You may get the local clustering coefficient of a single node, or an array of nodes,
by providing the node ID, or an array of node IDs, to the node
argument.
Nodes that do not exist in the graph are ignored.
In particular, if none of the nodes passed to the node
argument exist,
an empty table is returned.
The local_clustering_coefficient
function requires a RAI engine.
You can either specify the engine in a
RAI context
or provide an engine name to the rai_engine
argument.
The next section contains concrete examples.
Examples
Compute the local clustering coefficient of every node in a graph:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with five nodes and seven edges.
CREATE TABLE my_edges(x INT, y INT) AS (
SELECT *
FROM VALUES (1, 2), (1, 3), (2, 3), (3, 4), (4, 5), (2, 4), (3, 5)
);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the local clustering coefficient of each node in `'my_graph'`.
SELECT * FROM TABLE(RAI.local_clustering_coefficient('my_graph'));
/*+---------------------+
| NODE | VALUE |
+------+--------------+
| 1 | 1.0 |
| 2 | 0.6666666666 |
| 3 | 0.5 |
| 4 | 0.6666666666 |
| 5 | 1.0 |
+------+--------------+ */
Compute the local clustering coefficient of a single node in a graph:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with five nodes and seven edges.
CREATE TABLE my_edges(x INT, y INT) AS (
SELECT *
FROM VALUES (1, 2), (1, 3), (2, 3), (3, 4), (4, 5), (2, 4), (3, 5)
);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the local clustering coefficient of node 2 in `'my_graph'`.
SELECT * FROM TABLE(RAI.local_clustering_coefficient('my_graph'), {'node': 2});
/*+---------------------+
| NODE | VALUE |
+------+--------------+
| 2 | 0.6666666666 |
+------+--------------+ */
Compute the local clustering coefficient of multiple nodes in a graph:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with five nodes and seven edges.
CREATE TABLE my_edges(x INT, y INT) AS (
SELECT *
FROM VALUES (1, 2), (1, 3), (2, 3), (3, 4), (4, 5), (2, 4), (3, 5)
);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the local clustering coefficient of nodes 2 and 3 in `'my_graph'`.
SELECT * FROM TABLE(RAI.local_clustering_coefficient('my_graph', {'node': [2, 3]}));
/*+---------------------+
| NODE | VALUE |
+------+--------------+
| 2 | 0.6666666666 |
| 3 | 0.5 |
+------+--------------+ */
lookup
lookup(node_id)
Retrieve the object description corresponding to the given node ID.
Parameters
Parameter | Type | Description |
---|---|---|
node_id | Integer (opens in a new tab) | A node’s integer ID. |
Output
Type | Description |
---|---|
Object (opens in a new tab) | A dictionary containing values of key attributes that identify the object of the entity whose name is stored under the key type . |
Explanation
The entity name of the object is stored in the dictionary under the key type
.
Before using this function, you must populate the lookup table with
create_lookup
.
If this function raises the Failure during expansion
or Materialized View ... is invalid
errors, it is likely due to schema changes to one of the source tables used to populate and
maintain the lookup table. Use rebuild_lookup_table
to repair the
lookup table and list_lookups
to verify that the lookup table has
been populated by scanning the necessary tables.
Examples
SELECT LOOKUP(-5527614564291079873);
/* +------------------------------+
| LOOKUP(-5527614564291079873) |
|------------------------------|
| { |
| "first_name": "John", |
| "last_name": "Smith", |
| "type": "Client" |
| } |
+------------------------------+ */
SELECT LOOKUP(-2071496898560134469);
/* +------------------------------+
| LOOKUP(-2071496898560134469) |
|------------------------------|
| { |
| "name": "Scissors", |
| "type": "Product" |
| } |
+------------------------------+ */
See Also
node
, list_entities
, create_lookup
, and
list_lookups
.
max_degree
max_degree(graph_name)
max_degree(graph_name, arguments)
Return the maximum degree of a graph.
Parameters
Parameter | Type | Description |
---|---|---|
graph_name | Varchar (opens in a new tab) | The name of the graph. |
arguments | Object (opens in a new tab) | A JSON object containing additional arguments. |
Supported Arguments
The following arguments may be specified in thearguments
object:
Argument Name | Type | Required | Description |
---|---|---|---|
rai_engine | Varchar (opens in a new tab) | No | The name of the RAI engine to use to execute the algorithm. Required if no engine has been set in a RAI context. |
result_table | Varchar (opens in a new tab) | No | The fully qualified name of the Snowflake table in which to store results. If this argument is provided, the function returns an empty table. |
Output
Type | Description |
---|---|
Int (opens in a new tab) | The maximum degree of the graph. |
Explanation
The function max_degree('my_graph')
returns the maximum degree
over all degrees of nodes in my_graph
.
If no graph with the provided name exists, an error is returned.
Note that in directed graphs, the degree of a node is the sum of its indegree and outdegree.
The max_degree
function requires a RAI engine.
You can either specify the engine in a
RAI context
or provide an engine name to the rai_engine
argument.
The next section contains concrete examples.
Examples
Get the maximum degree a directed graph:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Get the maximum degree of `'my_graph'`.
SELECT RAI.max_degree('my_graph');
/*+---+
| 2 |
+---+ */
Get the maximum degree in a directed graph:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create a directed graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges', {'directed': true});
-- Get the maximum degree of `'my_graph'`.
SELECT RAI.max_degree('my_graph');
/*+---+
| 3 |
+---+ */
Get the maximum degree of a graph using a different RAI engine than the engine set in the RAI context, and store the result in a Snowflake table:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Get the maximum degree of `'my_graph'` using the RAI engine `'my_other_rai_engine'`
-- and store the results in the Snowflake table `my_result_table`.
-- Note that the name of the Snowflake table must be fully qualified.
SELECT RAI.max_degree(
'my_graph',
{
'rai_engine': 'my_other_rai_engine',
'result_table': '<sf_database>.<sf_schema>.my_result_table'
}
);
-- Query the results.
SELECT * FROM my_result_table;
/*+------+
| COL1 |
+------+
| 2 |
+------+ */
See Also
degree
,
max_degree
,
average_degree
, and
degree_histogram
.
min_degree
min_degree(graph_name)
min_degree(graph_name, arguments)
Return the minimum degree of a graph.
Parameters
Parameter | Type | Description |
---|---|---|
graph_name | Varchar (opens in a new tab) | The name of the graph. |
arguments | Object (opens in a new tab) | A JSON object containing additional arguments. |
Supported Arguments
The following arguments may be specified in thearguments
object:
Argument Name | Type | Required | Description |
---|---|---|---|
rai_engine | Varchar (opens in a new tab) | No | The name of the RAI engine to use to execute the algorithm. Required if no engine has been set in a RAI context. |
result_table | Varchar (opens in a new tab) | No | The fully qualified name of the Snowflake table in which to store results. If this argument is provided, the function returns an empty table. |
Output
Type | Description |
---|---|
Int (opens in a new tab) | The minimum degree of the graph. |
Explanation
The function min_degree('my_graph')
returns the minimum degree
over all degrees of nodes in my_graph
.
If no graph with the provided name exists, an error is returned.
Note that in directed graphs, the degree of a node is the sum of its indegree and outdegree.
The min_degree
function requires a RAI engine.
You can either specify the engine in a
RAI context
or provide an engine name to the rai_engine
argument.
The next section contains concrete examples.
Examples
Get the minimum degree of a directed graph:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Get the minimum degree of `'my_graph'`.
SELECT RAI.min_degree('my_graph');
/*+---+
| 1 |
+---+ */
Get the minimum degree of a graph using a different RAI engine than the engine set in the RAI context, and store the result in a Snowflake table:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Get the minimum degree of `'my_graph'` using the RAI engine `'my_other_rai_engine'`
-- and store the results in the Snowflake table `my_result_table`.
-- Note that the name of the Snowflake table must be fully qualified.
SELECT RAI.min_degree(
'my_graph',
{
'rai_engine': 'my_other_rai_engine',
'result_table': '<sf_database>.<sf_schema>.my_result_table'
}
);
-- Query the results.
SELECT * FROM my_result_table;
/*+------+
| COL1 |
+------+
| 1 |
+------+ */
See Also
degree
,
min_degree
,
average_degree
, and
degree_histogram
.
neighbor
neighbor(graph_name)
neighbor(graph_name, arguments)
Return the number of edges in a graph.
Parameters
Parameter | Type | Description |
---|---|---|
graph_name | Varchar (opens in a new tab) | The name of the graph. |
arguments | Object (opens in a new tab) | A JSON object containing additional arguments. |
Supported Arguments
The following arguments may be specified in thearguments
object:
Argument Name | Type | Required | Description |
---|---|---|---|
tuples | Array (opens in a new tab) | No. | An array of arrays representing pairs of nodes. May not be combined with the node1 and node2 arguments. |
node1 | Int (opens in a new tab) / Array (opens in a new tab) | No. | A node, or an array of nodes. May not be combined with the tuples argument. |
node2 | Int (opens in a new tab) / Array (opens in a new tab) | No. | A node, or an array of nodes. |
rai_engine | Varchar (opens in a new tab) | Yes, except if the engine is set via a RAI context. | The name of the RAI engine to use to execute the algorithm. |
result_table | Varchar (opens in a new tab) | No. | The fully qualified name of the Snowflake table in which to store results. |
Output
Type | Description | Schema |
---|---|---|
Table (opens in a new tab) | A table representing pairs of neighbors. | TABLE(node1 INT, node2 INT) |
Explanation
Two nodes are neighbors if there is any edge in the graph
that links the nodes together.
The neighbor
function returns a table with two columns
— node1
and node2
—
whose rows indicate that node1
and node2
are neighbors.
If no graph with the provided name exists, an error is returned.
A RAI engine is required to execute the neighbor
function.
You can either specify the engine in a
RAI context
or provide an engine name to the rai_engine
argument.
One of the node1
and tuples
arguments are required,
and they may not be used together.
There are several ways to use the neighbor
function:
- Find the neighbors of nodes, or set of nodes,
by passing a node ID, or arrays of node IDs, to the
node1
argument. - Find the neighbors for every node in the graph
by calling the function without an
arguments
object. - Check if two nodes are neighbors
by passing each node ID to the
node1
andnode2
arguments. If the nodes are neighbors, the function returns a row in the result table containing those nodes. Otherwise, an empty table is returned. You may check multiple pairs of nodes simultaneously by passing an array of pairs of node IDs to thetuples
argument.
Nodes that do not exist in the graph are ignored. The next section contains concrete examples.
Examples
Find the neighbors of a node:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Find the neighbors of node 2 in `'my_graph'`.
SELECT * FROM TABLE(RAI.neighbor('my_graph', {'node1': 2}));
/*+---------------+
| NODE1 | NODE2 |
+-------+-------+
| 2 | 1 |
| 2 | 3 |
+-------+-------+ */
-- Find the neighbors of nodes 1 and 2 by passing an array to the `'node1'` argument.
SELECT * FROM TABLE(RAI.neighbor('my_graph', {'node1': [1, 2]}))
/*+---------------+
| NODE1 | NODE2 |
+-------+-------+
| 1 | 2 |
| 2 | 1 |
| 2 | 3 |
+-------+-------+ */
Find the neighbors of each node in a graph:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Find the neighbors of each node in `'my_graph'`.
SELECT * FROM TABLE(RAI.neighbor('my_graph'));
/*+---------------+
| NODE1 | NODE2 |
+-------+-------+
| 1 | 2 |
| 2 | 1 |
| 2 | 3 |
| 3 | 2 |
+-------+-------+ */
Check if two nodes are neighbors:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Check if nodes 1 and 2 are neighbors.
-- Since nodes 1 and 2 are neighbors, the result contains the row
-- with those nodes in the NODE1 and NODE2 columns.
SELECT * FROM TABLE(RAI.neighbor('my_graph', {'node1': 1, 'node2': 2}));
/*+---------------+
| NODE1 | NODE2 |
+-------+-------+
| 1 | 2 |
+-------+-------+ */
-- Check if nodes 1 and 3 are neighbors.
-- Since nodes 1 and 3 are not neighbors, the result is empty.
SELECT * FROM TABLE(RAI.neighbor('my_graph', {'node1': 1, 'node2': 3}));
/*+---------------+
| NODE1 | NODE2 |
+-------+-------+
| Empty table. |
+-------+-------+ */
-- Check multiple pairs simultaneously by passing an array of pairs to
-- the `'tuples'` argument. The result table only contains rows corresponding
-- to pairs of neighbors.
SELECT * FROM TABLE(RAI.neighbor('my_graph', {'tuples': [[1, 2], [1, 3], [2, 3]]}))
/*+---------------+
| NODE1 | NODE2 |
+-------+-------+
| 1 | 2 |
| 2 | 3 |
+-------+-------+ */
Get the neighbors of each node in a graph using a different RAI engine than the engine set in the RAI context, and store the results in a Snowflake table:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Get pairs of neighbors in `'my_graph'` using the RAI engine `'my_other_rai_engine'`
-- and store the results in the Snowflake table `my_result_table`.
-- Note that the name of the Snowflake table must be fully qualified.
SELECT TABLE(RAI.neighbor(
'my_graph',
{
'rai_engine': 'my_other_rai_engine',
'result_table': '<sf_database>.<sf_schema>.my_result_table'
}
));
-- Query the results.
SELECT * FROM my_result_table;
/*+--------------+
| COL1 | COL2 |
+-------+------+
| 1 | 2 |
| 2 | 1 |
| 2 | 3 |
| 3 | 2 |
+-------+------+ */
See Also
node
node(entity_name, entity_key_values)
Compute the node ID corresponding to an object of a given entity and identified by specific key values.
Parameters
Parameter | Type | Description |
---|---|---|
entity_name | Varchar (opens in a new tab) | The name of the entity. |
entity_key_values | Variant (opens in a new tab) or Array (opens in a new tab) | The key value(s) identifying an object in the scope of the entity. |
Output
Type | Description |
---|---|
Number (opens in a new tab) | The integer ID of the corresponding node. |
Explanation
The function is polymorphic: It accepts either a singular value if the entity key is a
singleton, or an array of values if the entity key is composite (has multiple attributes).
Snowflake coerces almost all basic values to the Variant
data type, except for character
data, which needs to be cast explicitly. For example, node('Product', 'Crayons'::VARIANT)
.
You should use entities that have been previously declared with
create_entity
, and the number of entity key values should be the same as
the number of key attributes used in the entity declaration.
Examples
SELECT RAI.node('Client', ['John', 'Smith']);
/* +------------------------------------------+
| SF_INT.NODE('CLIENT', ['JOHN', 'SMITH']) |
|------------------------------------------|
| -5527614564291079873 |
+------------------------------------------+ */
The following example shows an alternative use case where the entity has a single key attribute:
SELECT RAI.node('Order', 2095029);
/* +-------------------------------+
| SF_INT.NODE('ORDER', 2095029) |
|-------------------------------|
| -5670855959970978372 |
+-------------------------------+ */
Because the Varchar (opens in a new tab) is not coerced (opens in a new tab) by Snowflake into Variant (opens in a new tab), creating the nodes of an entity with a single Varchar requires either explicitly casting Variant into Variant, or using a single element list.
SELECT RAI.node('Product', 'Scissors'::VARIANT);
/* +---------------------------------------------+
| SF_INT.NODE('PRODUCT', 'SCISSORS'::VARIANT) |
|---------------------------------------------|
| -2071496898560134469 |
+---------------------------------------------+ */
SELECT RAI.node('Product', ['Scissors']);
/* +--------------------------------------+
| SF_INT.NODE('PRODUCT', ['SCISSORS']) |
|--------------------------------------|
| -2071496898560134469 |
+--------------------------------------+ */
Typically, the node
function is used to define sets of edges. For instance, if you work
with a table Purchase(Client_First_Name, Client_Last_Name, Product_Name)
and want to
create a graph connecting clients to their purchased products, you can define a view with the
edges as follows:
CREATE VIEW Purchase_Edge(src, dst) AS (
SELECT NODE('Client', [Client_First_Name, Client_Last_Name])
NODE('Product', [Product_Name])
FROM Purchases
);
See Also
num_edges
num_edges(graph_name)
num_edges(graph_name, arguments)
Return the number of edges in a graph.
Parameters
Parameter | Type | Description |
---|---|---|
graph_name | Varchar (opens in a new tab) | The name of the graph. |
arguments | Object (opens in a new tab) | A JSON object containing additional arguments. |
Supported Arguments
The following arguments may be specified in thearguments
object:
Argument Name | Type | Required | Description |
---|---|---|---|
rai_engine | Varchar (opens in a new tab) | No | The name of the RAI engine to use to execute the algorithm. Required if no engine has been set in a RAI context. |
result_table | Varchar (opens in a new tab) | No | The fully qualified name of the Snowflake table in which to store results. If this argument is provided, the function returns an empty table. |
Output
Type | Description |
---|---|
Int (opens in a new tab) | The number of edges in the graph. |
Explanation
The function num_edges('my_graph')
returns the number of edges in my_graph
.
If no graph with the provided name exists, an error is returned.
The num_edges
function requires a RAI engine.
You can either specify the engine in a
RAI context
or
provide an engine name to the rai_engine
argument.
The next section contains concrete examples.
Examples
Get the number of edges in a graph:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Get the number of edges in `'my_graph'`.
SELECT RAI.num_edges('my_graph');
/*+---+
| 2 |
+---+ */
Get the number of edges in a graph using a different RAI engine than the engine set in the RAI context, and store the results in a Snowflake table:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Get the number of edges in `'my_graph'` using the RAI engine `'my_other_rai_engine'`
-- and store the results in the Snowflake table `my_result_table`.
-- Note that the name of the Snowflake table must be fully qualified.
SELECT RAI.num_edges(
'my_graph',
{
'rai_engine': 'my_other_rai_engine',
'result_table': '<sf_database>.<sf_schema>.my_result_table'
}
);
-- Query the results.
SELECT * FROM my_result_table;
/*+------+
| COL1 |
+------+
| 2 |
+------+ */
See Also
num_nodes
num_nodes(graph_name)
num_nodes(graph_name, arguments)
Return the number of nodes in a graph.
Parameters
Parameter | Type | Description |
---|---|---|
graph_name | Varchar (opens in a new tab) | The name of the graph. |
arguments | Object (opens in a new tab) | A JSON object containing additional arguments. |
Supported Arguments
The following arguments may be specified in thearguments
object:
Argument Name | Type | Required | Description |
---|---|---|---|
rai_engine | Varchar (opens in a new tab) | No | The name of the RAI engine to use to execute the algorithm. Required if no engine has been set in a RAI context. |
result_table | Varchar (opens in a new tab) | No | The fully qualified name of the Snowflake table in which to store results. If this argument is provided, the function returns an empty table. |
Output
Type | Description |
---|---|
Int (opens in a new tab) | The number of nodes in the graph. |
Explanation
The function num_nodes('my_graph')
returns the number of nodes in my_graph
.
If no graph with the provided name exists, an error is returned.
The num_nodes
function requires a RAI engine.
You can either specify the engine in a
RAI context
or
provide an engine name to the rai_engine
argument.
The next section contains concrete examples.
Examples
Get the number of nodes in a graph:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Get the number of nodes in `'my_graph'`.
SELECT RAI.num_nodes('my_graph');
/*+---+
| 3 |
+---+ */
Get the number of nodes in a graph using a different RAI engine than the engine set in the RAI context, and store the results in a Snowflake table:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Get the number of nodes in `'my_graph'` using the RAI engine `'my_other_rai_engine'`
-- and store the results in the Snowflake table `my_result_table`.
-- Note that the name of the Snowflake table must be fully qualified.
SELECT RAI.num_nodes(
'my_graph',
{
'rai_engine': 'my_other_rai_engine',
'result_table': '<sf_database>.<sf_schema>.my_result_table'
}
);
-- Query the results.
SELECT * FROM my_result_table;
/*+------+
| COL1 |
+------+
| 3 |
+------+ */
See Also
num_triangles
num_triangles(graph_name)
num_triangles(graph_name, arguments)
Compute the number of unique triangles in a graph.
Parameters
Parameter | Type | Description |
---|---|---|
graph_name | Varchar (opens in a new tab) | The name of the graph. |
arguments | Object (opens in a new tab) | A JSON object containing additional arguments. |
Supported Arguments
The following arguments may be specified in thearguments
object:
Argument Name | Type | Required | Description |
---|---|---|---|
rai_engine | Varchar (opens in a new tab) | No | The name of the RAI engine to use to execute the algorithm. Required if no engine has been set in a RAI context. |
result_table | Varchar (opens in a new tab) | No | The fully qualified name of the Snowflake table in which to store results. If this argument is provided, the function returns an empty table. |
Output
Type | Description |
---|---|
Int (opens in a new tab) | The number of unique triangles in the graph. |
Explanation
The function num_triangles('my_graph')
returns
the number of unique triangles in my_graph
.
If no graph with the provided name exists, an error is returned.
The num_triangles
function requires a RAI engine.
You can either specify the engine in a
RAI context
or
provide an engine name to the rai_engine
argument.
The next section contains concrete examples.
Examples
Compute the number of unique triangles in a graph:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create a directed graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS (
SELECT * FROM VALUES (1, 3), (1, 4), (2, 1), (3, 2), (3, 4)
);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges', {'directed': true});
-- Get the number of unique triangles in `'my_graph'`.
SELECT RAI.num_triangles('my_graph');
/*+---+
| 1 |
+---+ */
If a graph has no triangles, the result of num_triangles
is zero:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Get the number of unique triangles in `'my_graph'`.
SELECT RAI.num_triangles('my_graph');
/*+---+
| 0 |
+---+ */
Get the number of unique triangles in a graph using a different RAI engine than the engine set in the RAI context, and store the results in a Snowflake table:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create a directed graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS (
SELECT * FROM VALUES (1, 3), (1, 4), (2, 1), (3, 2), (3, 4)
);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges', {'directed': true});
-- Get the number of nodes in `'my_graph'` using the RAI engine `'my_other_rai_engine'`
-- and store the results in the Snowflake table `my_result_table`.
-- Note that the name of the Snowflake table must be fully qualified.
SELECT RAI.num_triangles(
'my_graph',
{
'rai_engine': 'my_other_rai_engine',
'result_table': '<sf_database>.<sf_schema>.my_result_table'
}
);
-- Query the results.
SELECT * FROM my_result_table;
/*+------+
| COL1 |
+------+
| 1 |
+------+ */
See Also
triangle_count
,
triangle_community
, and
unique_triangle
.
pagerank
pagerank(graph_name)
pagerank(graph_name, arguments)
Compute the PageRank of nodes in a graph.
Parameters
Parameter | Type | Description |
---|---|---|
graph_name | Varchar (opens in a new tab) | The name of the graph. |
arguments | Object (opens in a new tab) | A JSON object containing additional arguments. |
Supported Arguments
The following arguments may be specified in thearguments
object:
Argument Name | Type | Required | Description |
---|---|---|---|
node | Int (opens in a new tab) / Array (opens in a new tab) | No | Instruct pagerank to return only the rows in the output table whose node column contains the provided value. |
rai_engine | Varchar (opens in a new tab) | No | The name of the RAI engine to use to execute the algorithm. Required if no engine has been set in a RAI context. |
result_table | Varchar (opens in a new tab) | No | The fully qualified name of the Snowflake table in which to store results. If this argument is provided, the function returns an empty table. |
Output
Type | Description | Schema |
---|---|---|
Table (opens in a new tab) | A table containing pairs of nodes and their PageRank value. | TABLE(node INT, value FLOAT) |
Explanation
PageRank is a measure
of the centrality, or importance, of a node in a graph.
It is similar to
eigenvector_centrality
,
but with an additional scaling factor.
The pagerank('my_graph')
function returns a table with two columns
— node
and value
—
whose rows represent pairs of nodes and their PageRank value.
If no graph with the provided name exists, an error is returned.
You may get the PageRank of a single node
by providing the node ID to the node
argument.
If the specified node does not exist in the graph, an empty table is returned.
The pagerank
function requires a RAI engine.
You can either specify the engine in a
RAI context
or provide an engine name to the rai_engine
argument.
The next section contains concrete examples.
Examples
Compute the PageRank of each node in a graph:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the PageRank of each node in `'my_graph'`.
SELECT * FROM TABLE(RAI.pagerank('my_graph'));
/*+---------------------+
| NODE | VALUE |
+------+--------------+
| 1 | 0.2567563672 |
| 2 | 0.4864872655 |
| 3 | 0.2567563672 |
+------+--------------+ */
Compute the PageRank of a single node:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the PageRank of node 2.
SELECT * FROM TABLE(RAI.pagerank('my_graph', {'node': 2}));
/*+---------------------+
| NODE | VALUE |
+------+--------------+
| 2 | 0.4864872655 |
+------+--------------+ */
Compute the PageRank of each node in a graph using a different RAI engine than the engine set in the RAI context, and store the results in a Snowflake table:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the PageRank of each node in `'my_graph'`
-- using the RAI engine `'my_other_rai_engine'` and store the results
-- in the Snowflake table `my_result_table`. Note that the name of the
-- Snowflake table must be fully qualified.
SELECT TABLE(RAI.pagerank(
'my_graph',
{
'rai_engine': 'my_other_rai_engine',
'result_table': '<sf_database>.<sf_schema>.my_result_table'
}
));
-- Query the results.
SELECT * FROM my_result_table;
/*+---------------------+
| COL1 | COL2 |
+------+--------------+
| 1 | 0.2567563672 |
| 2 | 0.4864872655 |
| 3 | 0.2567563672 |
+------+--------------+ */
See Also
betweenness_centrality
,
degree_centrality
, and
eigenvector_centrality
.
ping
ping()
Ping RAI and return the ping timestamp.
Output
Type | Description |
---|---|
Variant (opens in a new tab) | A timestamp of the ping time from Snowflake to RAI. |
Explanation
The function ping
returns a timestamp of the ping time from Snowflake to RAI. This is used to check whether RAI is accessible and running as expected.
Examples
SELECT RAI.ping();
See Also
preferential_attachment
preferential_attachment(graph_name, arguments)
Compute the preferential attachment score of pairs of nodes in a graph.
Parameters
Parameter | Type | Description |
---|---|---|
graph_name | Varchar (opens in a new tab) | The name of the graph. |
arguments | Object (opens in a new tab) | A JSON object containing additional arguments. |
Supported Arguments
The following arguments may be specified in thearguments
object:
Argument Name | Type | Required | Description |
---|---|---|---|
tuples | Array (opens in a new tab) | Yes, but not together with node1 . | An array of arrays representing pairs of nodes. |
node1 | Int (opens in a new tab) / Array (opens in a new tab) | Yes, but not together with tuples . | A node, or an array of nodes. |
node2 | Int (opens in a new tab) / Array (opens in a new tab) | No. | A node, or an array of nodes. |
rai_engine | Varchar (opens in a new tab) | Yes, except if the engine is set via a RAI context. | The name of the RAI engine to use to execute the algorithm. |
result_table | Varchar (opens in a new tab) | No. | The fully qualified name of the Snowflake table in which to store results. |
Output
Type | Description | Schema |
---|---|---|
Table (opens in a new tab) | A table containing pairs of nodes and their preferential attachment scores. | TABLE(node1 INT, node2 INT, score INT) |
Explanation
Preferential attachment measures the similarity of two nodes
as the product of their degrees.
The preferential_attachment
function returns a table with three columns
— node1
, node2
, and score
—
whose rows contain pairs of nodes and their preferential attachment scores.
If no graph with the provided name exists, an error is returned.
Higher scores indicate greater similarity,
and rows where score
is zero are omitted from the results.
A score of zero indicates that two nodes are neither similar nor dissimilar.
Excluding zeros from the results improves performance and spares you from having to remove those rows in a post-processing step.
A RAI engine is required to execute the preferential_attachment
function.
You can either specify the engine in a
RAI context
or provide an engine name to the rai_engine
argument.
One of the node1
and tuples
arguments are required,
and they may not be used together.
There are several ways to use the preferential_attachment
function:
- Compute the preferential attachment score of two nodes, or sets of nodes,
by passing node IDs, or arrays of node IDs, to the
node1
andnode2
arguments. You may compute the preferential attachment score for multiple pairs of nodes by passing an array of pairs of node IDs to thetuples
argument. - Compute the preferential attachment score of a node, or set of nodes,
and every other node in the graph, by passing a node ID, or array of node IDs,
to the
node1
argument.
Nodes that do not exist in the graph are ignored. The next section contains concrete examples.
Examples
Compute the preferential attachment score of two nodes:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the preferential attachment scores of nodes 1 and 2
-- using the `'node1'` and `'node2'` arguments.
SELECT * FROM TABLE(RAI.preferential_attachment('my_graph', {'node1': 1, 'node2': 2}));
/*+-----------------------+
| NODE1 | NODE2 | SCORE |
+-------+-------+-------+
| 1 | 2 | 4 |
+-------+-------+-------+ */
-- Compute the preferential attachment scores of nodes 1 and 2 and nodes 1 and 3
-- using the `'tuples'` argument.
SELECT * FROM TABLE(RAI.preferential_attachment('my_graph', {'tuples': [[1, 2], [1, 3]]}));
/*+-----------------------+
| NODE1 | NODE2 | SCORE |
+-------+-------+-------+
| 1 | 2 | 4 |
| 1 | 3 | 2 |
+-------+-------+-------+ */
Compute the preferential attachment score of a node and every other node:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the preferential attachment score of node 1 and every other node in `'my_graph'`.
SELECT * FROM TABLE(RAI.preferential_attachment('my_graph', {'node1': 1}));
/*+-----------------------+
| NODE1 | NODE2 | SCORE |
+-------+-------+-------+
| 1 | 1 | 4 |
| 1 | 2 | 4 |
| 1 | 3 | 2 |
+-------+-------+-------+ */
Compute the preferential attachment score of each node in a graph using a different RAI engine than the engine set in the RAI context, and store the results in a Snowflake table:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the preferential attachment score of node 1 and every other node in `'my_graph'`
-- using the RAI engine `'my_other_rai_engine'` and store the results
-- in the Snowflake table `'my_result_table'`. Note that the name of the
-- Snowflake table must be fully qualified.
SELECT TABLE(RAI.preferential_attachment(
'my_graph',
{
'node1': 1,
'rai_engine': 'my_other_rai_engine',
'result_table': '<sf_database>.<sf_schema>.my_result_table'
}
));
-- Query the results.
SELECT * FROM my_result_table;
/*+--------------------+
| COL1 | COL2 | COL3 |
+------+------+------+
| 1 | 1 | 4 |
| 1 | 2 | 4 |
| 1 | 3 | 2 |
+------+------+------+ */
See Also
jaccard_similarity
,
cosine_similarity
,
adamic_adar
, and
common_neighbor
.
shortest_path_length
shortest_path_length(graph_name, arguments)
Return the length of a shortest path from a source node to one or more target nodes in a graph.
Parameters
Parameter | Type | Description |
---|---|---|
graph_name | Varchar (opens in a new tab) | The name of the graph. |
arguments | Object (opens in a new tab) | A JSON object containing additional arguments. |
Supported Arguments
The following arguments may be specified in thearguments
object:
Argument Name | Type | Required | Description |
---|---|---|---|
tuples | Array (opens in a new tab) | Yes, but may not be combined with the source and target arguments. | An array of arrays representing pairs of nodes. |
source | Int (opens in a new tab) / Array (opens in a new tab) | Yes, but not together with tuples . | A node, or an array of nodes. |
target | Int (opens in a new tab) / Array (opens in a new tab) | No | A node, or an array of nodes. |
rai_engine | Varchar (opens in a new tab) | Yes, except if the engine is set via a RAI context. | The name of the RAI engine to use to execute the algorithm. |
result_table | Varchar (opens in a new tab) | No. | The fully qualified name of the Snowflake table in which to store results. |
Output
Type | Description | Schema |
---|---|---|
Table (opens in a new tab) | A table containing the shortest path length between pairs of nodes. | TABLE(source INT, target INT, length INT) |
Explanation
The function shortest_path_length
returns a table with three columns
— source
, target
, and length
—
whose rows represent the length of a shortest path
from a source node to a target node.
If no graph with the provided name exists, an error is returned.
Rows for which no path from the source
node to the target
node exists
are excluded from the results.
A RAI engine is required to execute the shortest_path_length
function.
You can either specify the engine in a
RAI context
or provide an engine name to the rai_engine
argument.
One of the node1
and tuples
arguments are required,
and they may not be used together.
There are several ways to use the shortest_path_length
function:
- Compute the shortest path length between a two nodes, or two sets of nodes,
by passing node IDs, or arrays of node IDS, to the
source
andtarget
arguments. You may compute the shortest path length between multiple pairs of nodes by passing an array of pars of node IDs to thetuples
argument. - Compute the shortest path length between a node, or a set of nodes,
and every node in the graph, by passing a node ID, or an array of node IDs
to the
source
argument.
Nodes that do not exist in the graph are ignored. The next section contains concrete examples.
Examples
Compute the shortest path length between two nodes:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the shortest path length between node 1 and node 3.
SELECT * FROM TABLE(RAI.shortest_path_length('my_graph', {'source': 1, 'target': 3}));
/*+--------------------------+
| SOURCE | TARGET | LENGTH |
+--------+--------+--------+
| 1 | 3 | 2 |
+--------+--------+--------+ */
-- Compute the shortest path length between nodes 1 and 2 and nodes 1 and 3
-- using the `'tuples'` argument.
SELECT * FROM TABLE(RAI.shortest_path_length('my_graph', {'tuples': [[1, 2], [1, 3]]}));
/*+--------------------------+
| SOURCE | TARGET | LENGTH |
+--------+--------+--------+
| 1 | 2 | 1 |
| 1 | 3 | 2 |
+--------+--------+--------+ */
Find the shortest path length from one node to every other node:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create a directed graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 1), (1, 2);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges', {'directed': true});
-- Find the shortest path length from node 1 to every node in `'my_graph'`.
-- Rows where no path between nodes exists are excluded from the results.
SELECT * FROM TABLE(RAI.shortest_path_length('my_graph', {'source': 1}));
/*+--------------------------+
| SOURCE | TARGET | LENGTH |
+--------+--------+--------+
| 1 | 1 | 0 |
| 1 | 2 | 1 |
| 1 | 3 | 2 |
+--------+--------+--------+ */
Get the length of a shortest path from a source node to all reachable nodes using a different RAI engine than the engine set in the RAI context, and store the results in a Snowflake table:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 2), (2, 3);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Find the shortest path length from node 1 in `'my_graph'`
-- to all nodes reachable from node 1 using the RAI engine `'my_other_rai_engine'`
-- and store the results in the Snowflake table `'my_result_table'`.
-- Note that the name of the Snowflake table must be fully qualified.
SELECT TABLE(RAI.shortest_path_length(
'my_graph',
{
'source': 1,
'rai_engine': 'my_other_rai_engine',
'result_table': '<sf_database>.<sf_schema>.my_result_table'
}
));
-- Query the results.
SELECT * FROM my_result_table;
/*+--------------------+
| COL1 | COL2 | COL3 |
+------+------+------+
| 1 | 1 | 0 |
| 1 | 2 | 1 |
| 1 | 3 | 2 |
+------+------+------+ */
See Also
transitive_closure
transitive_closure(graph_name, arguments)
Computes the transitive closure of the edges in a graph and may be used to determine which nodes are reachable from each node in the graph.
Parameters
Parameter | Type | Description |
---|---|---|
graph_name | Varchar (opens in a new tab) | The name of the graph. |
arguments | Object (opens in a new tab) | A JSON object containing additional arguments. |
Supported Arguments
The following arguments may be specified in thearguments
object:
Argument Name | Type | Required | Description |
---|---|---|---|
tuples | Array (opens in a new tab) | Yes, but may not be combined with the source and target arguments. | An array of arrays representing pairs of nodes. |
source | Int (opens in a new tab) / Array (opens in a new tab) | Yes, but not together with tuples . | A node, or an array of nodes. |
target | Int (opens in a new tab) / Array (opens in a new tab) | No. | A node, or an array of nodes. |
rai_engine | Varchar (opens in a new tab) | Yes, except if the engine is set via a RAI context. | The name of the RAI engine to use to execute the algorithm. |
result_table | Varchar (opens in a new tab) | No. | The fully qualified name of the Snowflake table in which to store results. |
Output
Type | Description | Schema |
---|---|---|
Table (opens in a new tab) | A table containing pairs of reachable nodes. | TABLE(source INT, target INT) |
Explanation
The transitive closure of a graph is the set of all pairs of source and target nodes for which there exists a path beginning at the source node and ending at the target node. If such a path exists, the target node is said to be reachable from the source node.
The transitive_closure
function returns a table with two columns
— source
and target
—
whose rows represent pairs of nodes for which the target
node
is reachable from the source
node.
If no graph with the provided name exists, an error is returned.
Rows for which no path from the source
node to the target
node exists
are excluded from the results.
A RAI engine is required to execute the transitive_closure
function.
You can either specify the engine in a
RAI context
or provide an engine name to the rai_engine
argument.
One of the node1
and tuples
arguments are required,
and they may not be used together.
There are several ways to use the transitive_closure
function:
- Check if a target node is reachable from a source node
by passing node IDs to the
source
andtarget
arguments. If it is reachable, the result contains the source and target pair. Otherwise, the result is empty. Multiple pairs may be checked simultaneously by passing an array of pairs of node IDs to thetuples
argument. - Find every node reachable from a source node, or a set of source nodes,
by passing a node ID, or an array of node IDs, to the
source
argument.
Nodes that do not exist in the graph are ignored. The next section contains concrete examples.
Examples
Determine if a node is reachable from another node in a graph:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 2), (3, 4);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Check whether or not node 2 is reachable from node 1.
-- Since node 2 is reachable from node 1, the result table is non-empty.
SELECT * FROM TABLE(RAI.transitive_closure('my_graph', {'source': 1, 'target': 2}));
/*+-----------------+
| SOURCE | TARGET |
+--------+--------+
| 1 | 2 |
+--------+--------+ */
-- Check whether or not node 3 is reachable from node 1.
-- Since node 3 is not reachable from node 1, the result table is empty.
SELECT * FROM TABLE(RAI.transitive_closure('my_graph', {'source': 1, 'target': 3}));
/*+-----------------+
| SOURCE | TARGET |
+--------+--------+
| Empty result |
+--------+--------+ */
-- Check multiple pairs of nodes simultaneously using the `'tuples'` argument.
-- Only the rows corresponding to reachable pairs are included in the result table.
SELECT * FROM TABLE(RAI.transitive_closure('my_graph', {'tuples': [[1, 2], [1, 3]]}));
/*+-----------------+
| SOURCE | TARGET |
+--------+--------+
| 1 | 2 |
+--------+--------+ */
Find every node reachable from a given source node:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 2), (3, 4);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Get all nodes in `'my_graph'` reachable from node 1.
SELECT * FROM TABLE(RAI.transitive_closure('my_graph', {'source': 1}));
/*+-----------------+
| SOURCE | TARGET |
+--------+--------+
| 1 | 2 |
| 1 | 3 |
+--------+--------+ */
Get every node reachable from a given node using a different RAI engine than the engine set in the RAI context, and store the results in a Snowflake table:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 2), (3, 4);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Find all nodes reachable from node 1 using the RAI engine `'my_other_rai_engine'`
-- and store the results in the Snowflake table `'my_result_table'`.
-- Note that the name of the Snowflake table must be fully qualified.
SELECT TABLE(RAI.transitive_closure(
'my_graph',
{
'source': 1,
'rai_engine': 'my_other_rai_engine',
'result_table': '<sf_database>.<sf_schema>.my_result_table'
}
));
-- Query the results.
SELECT * FROM my_result_table;
/*+-------------+
| COL1 | COL2 |
+------+------+
| 1 | 2 |
| 1 | 3 |
+------+------+ */
See Also
triangle_community
triangle_community(graph_name)
triangle_community(graph_name, arguments)
Find K-clique communities (with K=3
) using the percolation method (opens in a new tab).
This algorithm does not support directed graphs.
Parameters
Parameter | Type | Description |
---|---|---|
graph_name | Varchar (opens in a new tab) | The name of the graph. |
arguments | Object (opens in a new tab) | A JSON object containing additional arguments. |
Supported Arguments
You can specify the following arguments in thearguments
object:
Argument Name | Type | Required | Description |
---|---|---|---|
node | Int (opens in a new tab) / Array (opens in a new tab) | No. | A node ID, or array of node IDs. |
community | Int (opens in a new tab) / Array (opens in a new tab) | No. | A community ID, or array of community IDs. |
rai_engine | Varchar (opens in a new tab) | Yes, unless the engine is set via a RAI context. | The name of the RAI engine to use to execute the algorithm. |
result_table | Varchar (opens in a new tab) | No. | The fully qualified name of the Snowflake table in which to store results. |
Output
Type | Description | Schema |
---|---|---|
Table (opens in a new tab) | A table containing node IDs and their community IDs. | TABLE(node INT, community INT) |
Explanation
A triangle community is the union of all triangles (3-cliques) that can be reached through adjacent triangles, where two triangles are adjacent if they share two nodes.
The triangle_community
function returns a table with two columns
— node
and community
—
whose rows pair a node ID with its triangle community label.
Community labels are integers and are computed deterministically.
Nodes that are not contained in a triangle are excluded from the results.
If no graph with the provided name exists, an error is returned.
A RAI engine is required to execute the triangle_community
function.
You can either specify the engine in a
RAI context
or provide an engine name to the rai_engine
argument.
Examples
Compute triangle community labels for each node in an undirected graph:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with six nodes and seven edges.
CREATE TABLE my_edges(x INT, y INT) AS (
SELECT * FROM VALUES
(1, 2), (2, 3), (3, 1), (3, 4),
(4, 5), (5, 6), (6, 4)
);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute triangle community labels.
SELECT * FROM TABLE(RAI.triangle_community('my_graph'));
/*+------------------+
| NODE | COMMUNITY |
+------+-----------+
| 1 | 1 |
| 2 | 1 |
| 3 | 1 |
| 4 | 2 |
| 5 | 2 |
| 6 | 2 |
+------+-----------+ */
Compute the triangle community label for a single node:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with six nodes and seven edges.
CREATE TABLE my_edges(x INT, y INT) AS (
SELECT * FROM VALUES
(1, 2), (2, 3), (3, 1), (3, 4),
(4, 5), (5, 6), (6, 4)
);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the triangle community label of node 2.
SELECT * FROM TABLE(RAI.triangle_community('my_graph', {'node': 2}));
/*+------------------+
| NODE | COMMUNITY |
+------+-----------+
| 2 | 1 |
+------+-----------+ */
Find all nodes with a given community label:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with six nodes and seven edges.
CREATE TABLE my_edges(x INT, y INT) AS (
SELECT * FROM VALUES
(1, 2), (2, 3), (3, 1), (3, 4),
(4, 5), (5, 6), (6, 4)
);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute triangle community labels.
SELECT * FROM TABLE(RAI.triangle_community('my_graph', {'community': 2}));
/*+------------------+
| NODE | COMMUNITY |
+------+-----------+
| 4 | 2 |
| 5 | 2 |
| 6 | 2 |
+------+-----------+ */
See Also
label_propagation
,
num_triangles
,
triangle_count
, and
unique_triangle
.
triangle_count
triangle_count(graph_name)
triangle_count(graph_name, arguments)
Count the number of unique triangles to which each node in a graph belongs.
Parameters
Parameter | Type | Description |
---|---|---|
graph_name | Varchar (opens in a new tab) | The name of the graph. |
arguments | Object (opens in a new tab) | A JSON object containing additional arguments. |
Supported Arguments
The following arguments may be specified in thearguments
object:
Argument Name | Type | Required | Description |
---|---|---|---|
node | Int (opens in a new tab) / Array (opens in a new tab) | No | Instruct triangle_count to return only the rows in the output table whose node column contains the provided value. |
rai_engine | Varchar (opens in a new tab) | No | The name of the RAI engine to use to execute the algorithm. Required if no engine has been set in a RAI context. |
result_table | Varchar (opens in a new tab) | No | The fully qualified name of the Snowflake table to store results. If this argument is provided, the function returns an empty table. |
Output
Type | Description | Schema |
---|---|---|
Table (opens in a new tab) | A table whose rows contain the number of unique triangles to which a node belongs. | TABLE(node INT, count INT) |
Explanation
The function triangle_count('my_graph')
returns a table
with two columns, node
and count
,
whose rows represent the number of unique triangles in the graph
to which each node belongs.
If no graph with the provided name exists, an error is returned.
The triangle_count
function requires a RAI engine.
You can either specify the engine in a
RAI context
or
provide an engine name to the rai_engine
argument.
The next section contains concrete examples.
Examples
Count the unique triangles to which each node in a graph belongs:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create a directed graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS (
SELECT * FROM VALUES (1, 2), (2, 3), (2, 4), (3, 1), (3, 4), (5, 1)
);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges', {'directed': true});
-- Count the number of unique triangles in `'my_graph'` to which each node belongs.
SELECT * FROM TABLE(RAI.triangle_count('my_graph'));
/*+--------------+
| NODE | COUNT |
+------+-------+
| 1 | 1 |
| 2 | 1 |
| 3 | 1 |
| 4 | 0 |
| 5 | 0 |
+------+-------+ */
Compute the number of unique triangles to which a given node belongs:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create a directed graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS (
SELECT * FROM VALUES (1, 2), (2, 3), (2, 4), (3, 1), (3, 4), (5, 1)
);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges', {'directed': true});
-- Count the number of unique triangles in `'my_graph'` to which each node belongs.
SELECT * FROM TABLE(RAI.triangle_count('my_graph', {'node': 2}));
/*+--------------+
| NODE | COUNT |
+------+-------+
| 2 | 1 |
+------+-------+ */
Count the unique triangles to which each node in a graph belongs using a different RAI engine than the one set in the RAI context, and store the results in a Snowflake table:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create a directed graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS (
SELECT * FROM VALUES (1, 2), (2, 3), (2, 4), (3, 1), (3, 4), (5, 1)
);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges', {'directed': true});
-- Count the number of unique triangles in `'my_graph'` to which
-- each node belongs using the RAI engine `'my_other_rai_engine'`
-- and store the results in the Snowflake table `my_result_table`.
-- Note that the name of the Snowflake table must be fully qualified.
SELECT TABLE(RAI.triangle_count(
'my_graph',
{
'rai_engine': 'my_other_rai_engine',
'result_table': '<sf_database>.<sf_schema>.my_result_table'
}
));
-- Query the results.
SELECT * FROM my_result_table;
/*+-------------+
| COL1 | COL2 |
+------+------+
| 1 | 1 |
| 2 | 1 |
| 3 | 1 |
| 4 | 0 |
| 5 | 0 |
+------+------+ */
See Also
num_triangles
,
triangle_community
, and
unique_triangle
.
unique_triangle
unique_triangle(graph_name)
unique_triangle(graph_name, arguments)
Compute triples of nodes, unique up to order, that form a triangle in a graph.
Parameters
Parameter | Type | Description |
---|---|---|
graph_name | Varchar (opens in a new tab) | The name of the graph. |
arguments | Object (opens in a new tab) | A JSON object containing additional arguments. |
Supported Arguments
The following arguments may be specified in thearguments
object:
Argument Name | Type | Required | Description |
---|---|---|---|
tuples | Array (opens in a new tab) | Yes, but may not be combined with the node1 , node2 , and node3 arguments. | An array of arrays representing pairs of nodes. |
node1 | Int (opens in a new tab) / Array (opens in a new tab) | Yes, but not together with tuples . | A node, or an array of nodes. |
node2 | Int (opens in a new tab) / Array (opens in a new tab) | No. | A node, or an array of nodes. |
node3 | Int (opens in a new tab) / Array (opens in a new tab) | No | A node, or an array of nodes. |
rai_engine | Varchar (opens in a new tab) | Yes, except if the engine is set via a RAI context. | The name of the RAI engine to use to execute the algorithm. |
result_table | Varchar (opens in a new tab) | No. | The fully qualified name of the Snowflake table in which to store results. |
Output
Type | Description | Schema |
---|---|---|
Table (opens in a new tab) | A table whose rows contain triples of nodes forming unique triangles in a graph. | TABLE(node1 INT, node2 INT, node3 INT) |
Explanation
The unique_triangle
function returns a table with three columns
— node1
, node2
, and node3
—
whose rows represent triples of nodes that form a triangle.
The node ids within the triples are ordered from smallest to largest to avoid combinatorially redundant triples that correspond to the same triangle.
If no graph with the provided name exists, an error is returned.
For undirected graphs, the uniqueness of each triple is guaranteed
because the nodes are ordered so that node1 < node2 < node3
.
For directed graphs, triples are ordered so that
node1 < node2
, node1 < node3
, and node2 != node3
.
This admits triangles with the same nodes but oppositely directed edges.
For example, the triples 1, 2, 3
and 1, 3, 2
represent
two unique directed triangles.
A RAI engine is required to execute the unique_triangle
function.
You can either specify the engine in a
RAI context
or provide an engine name to the rai_engine
argument.
One of the node1
and tuples
arguments are required,
but they may not be used together.
There are several ways to use the unique_triangle
function:
- Find all unique triangles in a graph by calling
unique_triangle('my_graph')
. - Find all unique triangles containing a given node, or a set of nodes,
by passing a node ID, or array of node IDs, to the
node1
argument. Only triangles where the given node ID is the smallest node ID in the triangle will be returned, due to how triples are ordered. - Find all unique triangles containing a pair of nodes by passing node IDs
to the
node1
andnode2
arguments. You may find triangles for multiple pairs of nodes by passing an array of pairs of node IDs to thetuples
argument. The smallest node ID must be passed tonode1
due to how triples are ordered. - Check if three nodes form a triangle by passing the nodes IDs to the
node1
,node2
, andnode3
arguments. You may check multiple triples simultaneously by passing an array of triples of node IDs to thetuples
argument. To avoid false negatives, you must ensure that the node IDs are passed in the correct order.
Nodes that do not exist in the graph are ignored. The next section contains concrete examples.
Examples
Find all unique triangles in a graph:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an edge table representing a graph with four nodes and five edges.
CREATE TABLE my_edges(x INT, y INT) AS (
SELECT * FROM VALUES (1, 3), (2, 1), (2, 4), (3, 2), (3, 4)
);
-- Create a RAI data stream.
CALL RAI.create_data_stream('my_edges');
-- Create an undirected graph and a directed graph from the RAI data stream.
CALL RAI.create_graph('my_undirected_graph', 'my_edges');
CALL RAI.create_graph('my_directed_graph', 'my_edges', {'directed': true});
-- Compute all of the unique triangles in `'my_undirected_graph'`.
SELECT * FROM TABLE(RAI.unique_triangle('my_undirected_graph'));
/*+-----------------------+
| NODE1 | NODE2 | NODE3 |
+-------+-------+-------+
| 1 | 2 | 3 |
| 2 | 3 | 4 |
+-------+-------+-------+ */
-- Compute all of the unique triangles in `'my_directed_graph'`.
SELECT * FROM TABLE(RAI.unique_triangle('my_directed_graph'));
/*+-----------------------+
| NODE1 | NODE2 | NODE3 |
+-------+-------+-------+
| 1 | 3 | 2 |
+-------+-------+-------+ */
Find all unique triangles containing a given node:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with four nodes and five edges.
CREATE TABLE my_edges(x INT, y INT) AS (
SELECT * FROM VALUES (1, 3), (2, 1), (2, 4), (3, 2), (3, 4)
);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Find all unique triangles in `'my_graph'` starting with node 1
-- by passing the node ID to the `'node1'` argument.
SELECT * FROM TABLE(RAI.unique_triangle('my_graph', {'node1': 1}));
/*+-----------------------+
| NODE1 | NODE2 | NODE3 |
+-------+-------+-------+
| 1 | 2 | 3 |
+-------+-------+-------+ */
-- Find all unique triangles in `'my_graph'` starting with node 2
-- by passing the node ID to the `'node1'` argument. Even though
-- node 2 is contained in both of the two triangles in the graph,
-- there is only one triangle that "starts" at node 2, meaning
-- 2 is the smallest node ID in the triangle.
SELECT * FROM TABLE(RAI.unique_triangle('my_graph', {'node1': 2}))
/*+-----------------------+
| NODE1 | NODE2 | NODE3 |
+-------+-------+-------+
| 2 | 3 | 4 |
+-------+-------+-------+ */
-- Find all unique triangles in `'my_graph'` starting with any of
-- nodes 1, 2, or 3 by passing an array of node IDs to the `'node1'` argument.
-- There is no triangle represented with node 3 in the first column,
-- so only the rows for the triangles with nodes 1 and 2 in the first column
-- are returned.
SELECT * FROM TABLE(RAI.unique_triangle('my_graph', {'node1': [1, 2, 3]}))
/*+-----------------------+
| NODE1 | NODE2 | NODE3 |
+-------+-------+-------+
| 1 | 2 | 3 |
| 2 | 3 | 4 |
+-------+-------+-------+ */
Find all unique triangles containing two given nodes:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with four nodes and five edges.
CREATE TABLE my_edges(x INT, y INT) AS (
SELECT * FROM VALUES (1, 3), (2, 1), (2, 4), (3, 2), (3, 4)
);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Find all unique triangles in `'my_graph'` starting with node 1 and node 3.
SELECT * FROM TABLE(RAI.unique_triangle('my_graph', {'node1': 1, 'node2': 3}));
/*+-----------------------+
| NODE1 | NODE2 | NODE3 |
+-------+-------+-------+
| 1 | 3 | 2 |
+-------+-------+-------+ */
-- Find all unique triangles in `'my_graph'` starting with node 2 and node 3.
-- Even though both triangles in the graph contain nodes 2 and 3,
-- there is only one triangle represented with node 2 in the first column
-- and node 3 in the second column.
SELECT * FROM TABLE(RAI.unique_triangle('my_graph', {'node1': 1, 'node2': 3}));
/*+-----------------------+
| NODE1 | NODE2 | NODE3 |
+-------+-------+-------+
| 2 | 3 | 4 |
+-------+-------+-------+ */
-- Find all unique triangles in `'my_graph'` starting with nodes 1 and 2,
-- nodes 2 and 3, and nodes 3 and 4 by passing an array of node IDs to
-- the `'tuples'` argument. There is no triangle represented with node 3
-- in the first column, so only the rows with nodes 1 and 3 and nodes 2 and 3
-- in the first two columns are returned.
SELECT * FROM TABLE(RAI.unique_triangle('my_graph', {'tuples': [[1, 2], [2, 3], [3, 4]]}));
/*+-----------------------+
| NODE1 | NODE2 | NODE3 |
+-------+-------+-------+
| 1 | 2 | 3 |
| 2 | 3 | 4 |
+-------+-------+-------+ */
Determine whether or not three nodes form a unique triangle:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with four nodes and five edges.
CREATE TABLE my_edges(x INT, y INT) AS (
SELECT * FROM VALUES (1, 3), (2, 1), (2, 4), (3, 2), (3, 4)
);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Determine whether or not nodes 1, 2, and 3 form a unique triangle in `'my_graph'`.
-- Note that the result table is non-empty, since there is a triangle
-- containing nodes 1, 3, and 2 and is represented with the nodes in that order.
SELECT * FROM TABLE(
RAI.unique_triangle('my_graph', {'node1': 1, 'node2': 2, 'node3': 3})
);
/*+-----------------------+
| NODE1 | NODE2 | NODE3 |
+-------+-------+-------+
| 1 | 2 | 3 |
+-------+-------+-------+ */
-- Determine whether or not nodes 1, 3, and 2 form a unique triangle in `'my_graph'`.
-- The result table is empty. Even though there is a triangle containing nodes
-- 1, 3, and 2, there is no triangle represented by the nodes in that order.
SELECT * FROM TABLE(
RAI.unique_triangle('my_graph', {'node1': 1, 'node2': 3, 'node3': 2})
);
/*+-----------------------+
| NODE1 | NODE2 | NODE3 |
+-------+-------+-------+
| Empty table |
+-------+-------+-------+ */
-- You can check multiple triples of nodes simultaneously by passing
-- an array of triples of node IDs to the `'tuples'` argument.
SELECT * FROM TABLE(
RAI.unique_triangle('my_graph', {'tuples': [[1, 2, 3], [1, 3, 2], [2, 3, 4]]})
)
/*+-----------------------+
| NODE1 | NODE2 | NODE3 |
+-------+-------+-------+
| 1 | 2 | 3 |
| 2 | 3 | 4 |
+-------+-------+-------+ */
Compute all of the unique triangles in a graph using a different RAI engine than the engine set in the RAI context, and store the results in a Snowflake table:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS (
SELECT * FROM VALUES (1, 3), (2, 1), (2, 4), (3, 2), (3, 4)
);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Find the common neighbors of node 1 and every other node in `'my_graph'`
-- using the RAI engine `'my_other_rai_engine'` and store the results
-- in the Snowflake table `my_result_table`. Note that the name of the
-- Snowflake table must be fully qualified.
SELECT TABLE(RAI.unique_triangle(
'my_graph',
{
'rai_engine': 'my_other_rai_engine',
'result_table': '<sf_database>.<sf_schema>.my_result_table'
}
));
-- Query the results.
SELECT * FROM my_result_table;
/*+-----------------------+
| NODE1 | NODE2 | NODE3 |
+-------+-------+-------+
| 1 | 2 | 3 |
| 2 | 3 | 4 |
+-------+-------+-------+ */
See Also
num_triangles
,
triangle_community
, and
triangle_count
.
weakly_connected_component
weakly_connected_component(graph_name)
weakly_connected_component(graph_name, arguments)
Computes the weakly connected components of a graph.
Parameters
Parameter | Type | Description |
---|---|---|
graph_name | Varchar (opens in a new tab) | The name of the graph. |
arguments | Object (opens in a new tab) | A JSON object containing additional arguments. |
Supported Arguments
The following arguments may be specified in thearguments
object:
Argument Name | Type | Required | Description |
---|---|---|---|
node | Int (opens in a new tab) / Array (opens in a new tab) | No | When provided, the function returns the index of the component to which node belongs. |
component | Int (opens in a new tab) / Array (opens in a new tab) | No | When provided without node , the function returns all nodes in the given component. Use node and component together to check whether or not a given node belongs to a given component. |
rai_engine | Varchar (opens in a new tab) | No | The name of the RAI engine to use to execute the algorithm. Required if no engine has been set in a RAI context. |
result_table | Varchar (opens in a new tab) | No | The fully qualified name of the Snowflake table in which to store results. If this argument is provided, the function returns an empty table. |
Output
Type | Description | Schema |
---|---|---|
Table (opens in a new tab) | A table containing nodes and the index of the weakly connected component to which they belong. | TABLE(node INT, component INT) |
Explanation
The weakly_connected_component('my_graph')
function
computes the
weak component (opens in a new tab)
to which each node in the graph belongs.
The component ID is the minimum ID of any node belonging to the component.
If no graph with the provided name exists, an error is returned.
Both directed and undirected graphs are supported
by the weakly_connected_component
function.
In undirected graphs, weakly connected components are the same
as connected components.
The weakly_connected_component
function requires a RAI engine.
You can either specify the engine in a
RAI context
or provide an engine name to the rai_engine
argument.
The next section contains concrete examples.
Examples
Compute the weakly connected components of a graph:-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 2), (3, 4);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Compute the weakly connected components of `'my_graph'`.
SELECT * FROM TABLE(RAI.weakly_connected_component('my_graph'));
/*+------------------+
| NODE | COMPONENT |
+------+-----------+
| 1 | 1 |
| 2 | 1 |
| 3 | 3 |
| 4 | 3 |
+------+-----------+ */
Find the weakly connected component to which a given node belongs:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create a directed graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 2), (3, 4);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges', {'directed': true});
-- Find the weakly connected component of `'my_graph'` containing node 2.
SELECT * FROM TABLE(RAI.weakly_connected_component('my_graph', {'node': 2}));
/*+------------------+
| NODE | COMPONENT |
+------+-----------+
| 2 | 1 |
+------+-----------+ */
Find all nodes in a given component of a graph:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 2), (3, 4);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Find all nodes in `'my_graph'` belonging to component 3.
SELECT * FROM TABLE(RAI.weakly_connected_component('my_graph', {'component': 3}));
/*+------------------+
| NODE | COMPONENT |
+------+-----------+
| 3 | 3 |
| 4 | 3 |
+------+-----------+ */
Determine whether or not a given node belongs to a given component:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with two nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 2), (3, 4);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Check whether or not node 2 belongs to component 1.
-- Note that the output table is non-empty, since node 2 belongs to component 1.
SELECT * FROM TABLE(
RAI.weakly_connected_component('my_graph', {'node': 2, 'component': 1})
);
/*+------------------+
| NODE | COMPONENT |
+------+-----------+
| 2 | 1 |
| 4 | 3 |
+------+-----------+ */
-- Check whether or not node 2 belongs to component 3.
-- Note that the output table is empty, since node 2 does not belong to component 3.
SELECT * FROM TABLE(
RAI.weakly_connected_component('my_graph', {'node': 2, 'component': 1})
);
/*+------------------+
| NODE | COMPONENT |
+------+-----------+
| Empty table |
+------+-----------+ */
Compute the weakly connected components of a graph using a different RAI engine than the engine set in the RAI context, and store the results in a Snowflake table:
-- Set the RAI context.
CALL RAI.use_rai_database('my_rai_db');
CALL RAI.use_rai_engine('my_rai_engine');
-- Create an undirected graph with three nodes and two edges.
CREATE TABLE my_edges(x INT, y INT) AS SELECT * FROM VALUES (1, 2), (3, 4);
CALL RAI.create_data_stream('my_edges');
CALL RAI.create_graph('my_graph', 'my_edges');
-- Get the number of edges in `'my_graph'` using the RAI engine `'my_other_rai_engine'`
-- and store the results in the Snowflake table `my_result_table`.
-- Note that the name of the Snowflake table must be fully qualified.
SELECT TABLE(RAI.weakly_connected_component(
'my_graph',
{
'rai_engine': 'my_other_rai_engine',
'result_table': '<sf_database>.<sf_schema>.my_result_table'
}
));
-- Query the results.
SELECT * FROM my_result_table;
/*+-------------+
| COL1 | COL2 |
+------+------+
| 1 | 1 |
| 2 | 1 |
| 3 | 3 |
| 4 | 3 |
+------+------+ */
See Also